
20HIV Treatment Using
Optimal Control

Introduction

Viruses cause many common illnesses in society today, including influenza, the common cold, and
COVID-19. Viruses are obligate parasites, meaning that they must infect a host in order to replicate.
After entering a host cell, viruses hijack host machinery to replicate their genome and translate their
proteins. After this process, the new virus particles are assembled and lyse (break apart) the host
cell to find a new host.

Mammalian immune systems are composed of two interconnected systems: the innate immune
system and the adaptive immune system. While both branches of the immune system can combat
viruses, the adaptive immune system is especially suited to recognize and neutralize viral infections.
A major part of the adaptive immune response is helper T cells, as these cells moderate and regulate
all other facets of the immune response. Helper T cells are most characterized by the presence of a
receptor called CD4, which helps the cell recognize infections.

One of the most devastating viral illnesses today is acquired immunodeficiency syndrome
(AIDS), caused by the human immunodeficiency virus (HIV). HIV specifically targets and repli-
cates in helper T cells, rendering them nonfunctional and killing them. By taking out the most
important regulator of the immune system, HIV makes it difficult for the body to fight infection, so
sicknesses that would normally be trivial for the body to manage, such as the common cold, yeast
infections, and pneumonia, become deadly.

Currently, there is no cure for HIV, and vaccines are difficult to develop. Treatments that curb
the replication of HIV and help maintain healthy helper T cell population levels are available, but
they are expensive and must be taken for the rest of a patient’s life. Optimizing the dosage is essential
to maximize the drug’s effect while minimizing the cost and negative side-effects of long-term usage.
In this lab, we will use optimal control to find the optimum dosage of a two-drug combination to fight
HIV. In this lab we will use optimal control to find the optimal dosage of a two-drug combination1.

1SHORT COURSES ON THE MATHEMATICS OF BIOLOGICAL COMPLEXITY, Web. 15 Apr. 2015
http://www.math.utk.edu/ lenhart/smb2003.v2.html.
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Derivation of Control
We begin by defining some variables. Let T represents the concentration of CD4+T cells and V the
concentration of HIV particles. s1 and s2 represent the production of T cells by various processes.
B1 and B2 are half saturation constants (sort of like crowd control in the blood stream and plasma).
Let µ be the death rate of uninfected T cells, k the rate of infection of T cells, and c the death rate
of the virus. Let g be the input rate of some external viral source. The control variables u1 and u2
represent the amount of drugs that introduce new T cells or kill the virus, respectively. 2

Next we write the state system, the equations that describe the changes in T cells and viruses:

dT (t)

dt
= s1 −

s2V (t)

B1 + V (t)
− µT (t)− kV (t)T (t) + u1(t)T (t),

dV (t)

dt
=

gV (t)

B2 + V (t)
(1− u2(t))− cV (t)T (t).

(20.1)

The term s1 − s2V (t)
B1+V (t) is the source/proliferation of unaffected T cells, µT (t) the natural loss of T

cells, kV (t)T (t) the loss of T cells by infection. gV (t)
B2+V (t) represents the viral contribution to plasma,

and cV (t)T (t) the viral loss. To these equations we add initial conditions T (0) = T0 and V (0) = V0.
3

We now seek to maximize the functional

J(u1, u2) =

∫ tf

0

[T − (A1u
2
1 +A2u

2
2)]dt .

This functional considers i) the benefit of T cells, and ii) the systematic costs of drug treatments. The
constants A1 and A2 represent scalars to adjust the size of terms coming from u21 and u22 respectively.
We seek an optimal control u∗1, u∗2 satisfying

J(u∗1, u
∗
2) = max

(u1,u2)∈U
J(u1, u2) = min

(u1,u2)∈U
−J(u1, u2),

where U = {(u1, u2) : ai ≤ ui(t) ≤ bi for t ∈ [0, tf ], i = 1, 2}.

Optimality System
The Hamiltonian is defined as:

H = λ⃗ · f⃗ − L

H = λ1

[
s1 −

s2V

B1 + V
− µT − kV T + u1T

]
+ λ2

[g(1− u2)V
B2 + V

− cV T
]

+ [T − (A1u
2
1 +A2u

2
2)].

Note that the costate is represented with λ instead of p. The costate evolution equations are:

λ
′

1 = −∂H
∂T

= −1 + λ1[µ+ kV ∗ − u∗1] + λ2cV
∗,

λ
′

2 = −∂H
∂V

= λ1

[ B1s2
(B1 + V ∗)2

+ kT ∗
]
− λ2

[B2g(1− u∗2)
(B2 + V ∗)2

− cT ∗
]

2‘Immunotherapy of HIV-1 Infection’, Kirschner, D. and Webb, G. F., Journal of Biological Systems, 6(1), 71-83
(1998)

3‘Optimal Control of an HIV Immunology Model’, H.R Joshi



163

where T ∗, V ∗ denote the optimal T, V . The endpoint conditions are λ1(tf ) = λ2(tf ) = 0, with
T (0) = T0 and V (0) = V0. Using Pontryagin’s maximum principle to find the control, we have

∂H

∂u1
= −2A1u

∗
1(t) + λ1T

∗(t) = 0
∂H

∂u2
= −2A2u

∗
2(t) + λ2

[ −gV ∗(t)

B2 + V ∗(t)

]
= 0

which gives (provided these are within the bounds of the controls)

u∗1(t) =
1

2A1
[λ1T

∗(t)] ,

u∗2(t) =
−1
2A2

[
λ2

gV ∗(t)

B2 + V ∗(t)

]
.

Taking into account the bounds on the controls, we have

u∗1(t) = min

{
max{a1,

1

2A1
(λ1T

∗(t))}, b1
}
,

u∗2(t) = min

{
max{a2,

−λ2
2A2

gV ∗(t)

B2 + V ∗(t)
}, b2

}
.

This gives us the optimal system

T ′ = s1 −
s2V

B1 + V
− µT − kV T +min{max{a1,

1

2A1
(λ1T )}, b1}T,

V ′ =
g(1−min{max{a2, −λ2

2A2

gV
B2+V }, b2})V

B2 + V
− cV T

(20.2)

λ′1 = −1 + λ1

[
µ+ kV −min{max{a1,

1

2A1
(λ1T )}, b1}

]
+ λ2cV,

λ′2 = λ1

[
B1s2

(B1 + V )2
+ kT

]
− λ2

[
B2g(1−min{max{a2, −λ2

2A2

V
B2+V }, b2})

(B2 + V )2
− cT

]
,

(20.3)

with end conditions λ1(tf ) = λ2(tf ) = 0, and T (0) = T0, V (0) = V0.

Creating a Numerical Solver
We iteratively solve for our control u. In each iteration we solve our state equations and our costate
equations numerically, then use those to find our new control. Lastly, we check to see if our control
has converged. To solve each set of differential equations, we will use the RK4 solver from a previous
lab with one minor adjustment. Our state equations depend on u, and our costate equations depend
on our state equations. Therefore, we will pass another parameter into the function that RK4 takes
in that will index the arrays our equations depend on.

# Dependencies for this lab's code:
import numpy as np
from matplotlib import pyplot as plt

#Code from RK4 Lab with minor edits
def initialize_all(y0, t0, tf, n):

""" An initialization routine for the different ODE solving
methods in the lab. This initializes Y, T, and h. """
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if isinstance(y0, np.ndarray):
Y = np.empty((n, y0.size)).squeeze()

else:
Y = np.empty(n)

Y[0] = y0
T = np.linspace(t0, tf, n)
h = float(tf - t0) / (n - 1)
return Y, T, h

def RK4(f, y0, t0, tf, n):
""" Use the RK4 method to compute an approximate solution
to the ODE y' = f(t, y) at n equispaced parameter values from t0 to t
with initial conditions y(t0) = y0.

y0 is assumed to be either a constant or a one-dimensional numpy array.
tf and t0 are assumed to be constants.
f is assumed to accept three arguments.
The first is a constant giving the value of t.
The second is a one-dimensional numpy array of the same size as y.
The third is an index to the other arrays.

This function returns an array Y of shape (n,) if
y is a constant or an array of size 1.
It returns an array of shape (n, y.size) otherwise.
In either case, Y[i] is the approximate value of y at
the i'th value of np.linspace(t0, tf, n).
"""
Y,T,h = initialize_all(y0,t0,tf,n)
for i in range(n-1):

K1 = f(T[i],Y[i],i)
K2 = f(T[i]+h/2.,Y[i]+h/2.*K1,i)
K3 = f(T[i]+h/2.,Y[i]+h/2.*K2,i)
K4 = f(T[i+1],Y[i]+h*K3,i)
Y[i+1] = Y[i] + h/6.*(K1+2*K2 +2*K3+K4)

return Y

Problem 1. Create a function that defines the state equations and returns both equations in
a single array. The function should be able to be passed into the RK4 solver. This function
can depend on the global variables defined below.

Achtung!

When solving the state equations, because of the nature of T ′ and V ′, solve the original
equations (20.1) from the beginning of the lab and not the equations (20.2) with u∗i (t)

replaced by the minmax function.
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a_1, a_2 = 0, 0
b_1, b_2 = 0.02, 0.9
s_1, s_2 = 2., 1.5
mu = 0.002
k = 0.000025
g = 30.
c = 0.007
B_1, B_2 = 14, 1
A_1, A_2 = 250000, 75
T0, V0 = 400, 3
t_f = 50
n = 2000

These constants come from both references cited at the end of this lab.

# initialize global variables, state, costate, and u.
state = np.zeros((n,2))
state0 = np.array([T0, V0])

costate = np.zeros((n,2))
costate0 = np.zeros(2)

u=np.zeros((n,2))
u[:,0] = .02
u[:,1] = .9

# define state equations
def state_equations(t,y,i):

'''
Parameters
---------------
t : float

the time
y : ndarray (2,)

the T cell concentration and the Virus concentration at time t
i : int

index for the global variable u.
Returns
--------------
y_dot : ndarray (2,)

the derivative of the T cell concentration and the virus ←↩
concentration at time t

'''
pass
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The state equations work great in the RK4 solver; however, the costate equations have end
conditions rather than initial conditions. Thus we want our RK4 solver to iterate backwards from
the end to the beginning. An easy way to accomplish this is to define a function λ̂i(t) = λi(tf − t).
Then λ̂i has the initial conditions λ̂i(0) = λi(tf ). We get the new equations

λ̂′1(t) = λ1(tf − t) (−µ− kV (tf − t) + u1(tf − t))− cλ2(tf − t)V (tf − t) + 1,

λ̂′2(t) = −λ1(tf − t)
(

s2B1

(B1 + V (tf − t))2
+ kT (tf − t)

)
+ λ2(tf − t)

(
gB2(1− u2(tf − t))
(B2 + V (tf − t))2

− cT (tf − t)
)
.

These we can solve with our RK4 solver and recover the original costate equations by simply
indexing the array backwards.

Problem 2. Create a function that defines the costate equations and returns both equations
in a single array. The function should be able to be passed into the RK4 solver. Use the global
variables as defined in Problem 1.

def lambda_hat(t,y,i):
'''
Parameters
---------------
t : float

the time
y : ndarray (2,)

the lambda_hat values at time t
i : int

index for global variables, u and state.
Returns
--------------
y_dot : ndarray (2,)

the derivative of the lambda_hats at time t.
'''
pass

Finally, we can put these together to create our solver.

Problem 3. Create and run a numerical solver for the HIV two drug model using the code
below.

epsilon = 0.001
test = epsilon + 1

while(test > epsilon):
oldu = u.copy();
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Figure 20.1: The solution to Problem 3.

#solve the state equations with forward iteration
#state = RK4(...)

#solve the costate equations with backwards iteration
#costate = RK4(...)[::-1]

#solve for u1 and u2

#update control
u[:,0] = 0.5*(u1 + oldu[:,0])
u[:,1] = 0.5*(u2 + oldu[:,1])

#test for convergence
test = abs(oldu - u).sum()

Your solutions should match Figure 20.1.
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Patients usually take several different classes of drugs at a time to prevent HIV from replicating
and progressing into AIDS. Reverse transcriptase inhibitors prevent the HIV genome from inserting
itself into the host genome. These prevent helper T cell death by lowering the number of HIV
particles in the body. Protease inhibitors prevent the activation of HIV proteins that are needed for
replication. Fusion inhibitors can be taken early in the course of HIV infection and prevent the entry
of HIV into helper T cells. There are many unique drugs in each class, all with known and unknown
interactions and side effects. Physicians rotate through drugs to help their patients have a positive
outcome and to prevent the virus from becoming resistant to any one drug.
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