Method of Mean
Weighted Residuals

Lab Objective: We introduce the method of mean weighted residuals (MWR) and use it to derive
a pseudospectral method. This method will then be used to solve several boundary value problems.

Consider a linear differential equation
Lu = f,

defined on the interval [—1, 1], together with associated boundary conditions. We will approximate
the solution u(x) by a linear combination of N + 1 basis functions ¢;, so that

N
u(r) = un(r) = Zaid’i(x)'
i=0

To determine appropriate constants a;, we then minimize the residual function
R(z,un) = Luy — f.

Note that R(x,u) = Lu — f = 0 for the true solution u(x).

This general strategy is often called the method of mean weighted residuals (MWR method).
The MWR method is a general framework that describes many other, more specific methods. These
more specific methods come from differing approaches to minimizing the residual R(z,uy), and the
choice of basis functions ¢;.

The Pseudospectral Method

The pseudospectral or collocation method is obtained from the MWR method by forcing the residual
function R(z,uy) to equal zero at N + 1 points in [—1, 1], called collocation points. When done
correctly, the pseudospectral method gives high accuracy and converges rapidly.

We will let the basis functions ¢; be the Chebyshev polynomials,

To(x) =1
Ti(x) =x
Tht1(z) = 22T (x) — Th—1(x)

119

120 Lab 14. Method of Mean Weighted Residuals

and the collocation points will be the Gauss-Lobatto points, z; = cos(wi/N), i = 0,...,N. The
appropriate solution uy may be represented with two equivalent forms. First, uy can be described
with the first N + 1 coefficients {a; ZN:O of its expansion in the Chebyshev polynomials. Since uy is
a polynomial of order N, it may be uniquely described by its values at the collocation points, that
is, the unknown values {uy (x;)}¥ .

These equivalent forms satisfy

MA=F (14.1)
and
LU =F (14.2)
where
U; = u(z;),
Ai = ay,
Lij = (LC;j(@))] y—y, »
Mij = (Lo;(2))],—y, -
The functions C; above are the cardinal functions, defined to be the polynomials of least degree
satisfying

R

Thus, un can also be expanded in the basis of the cardinal functions:

N

un(x) =Y un(z;)Cy(@).

=0

When L = d/dx, the matrix corresponding to equation (14.2) is given by

(1+2N?)/6 i=j=0,
aCy ,y] - 2Ns i=j=N,
Y de —x;/[2(1 — 23)] i=7,0<j <N,

(=) /aj(zi —x5)] i # J.

where g = ay = 2, and o; = 1 otherwise.

This matrix is often called the differentiation matrix (D), and can be used to piece together
the matrix L for more complicated differential operators. A stable, vectorized function to build the
differentiation matrix is given below.

import numpy as np

def cheb(N):
x = np.cos((np.pi/N)*np.linspace(0,N,N+1))
x.shape = (N+1,1)
lin = np.linspace(0,N,N+1)

121

lin.shape = (N+1,1)

c = np.ones((N+1,1))

cl0l, c[-1]1 = 2., 2.

c = cx(-1.)**lin

X = x*np.ones(N+1) # broadcast along 2nd dimension (columns)

dX = X - X.T

D = (cx(1./c).T)/(dX + np.eye(N+1))

D =D - np.diag(ap.sum(D.T,axis=0))

x.shape = (N+1,)

Here we return the differentiation matrix and the Chebyshev points,
numbered from x_0 = 1 to x_N = -1

return D, x

Using the Differentiation Matrix

Problem 1. Use the differentiation matrix to numerically approximate the derivative of u(z) =
e” cos(6x) on a grid of N Chebychev points where N = 6,8, and 10. (Use the linear system DU =
U’.) Then use barycentric interpolation (scipy.interpolate.barycentric_interpolate) to
approximate u’ on a grid of 100 evenly spaced points.

Graphically compare your approximation to the exact derivative. Note that this conver-
gence would not be occurring if the collocation points were equally spaced.

To approximate u”(x) on the grid {z;}, we use
U’ ~ D*U.
The BVP

can be discretized by the linear system
D?U = F, (14.3)

where F' = [f(x0),..., f(zn)]T. Since we have Dirichlet boundary conditions of 0, we can satisfy
the boundary condition by forcing U[0] = U[N] = 0. This is done by replacing the first and last
equations in (14.3) by the boundary conditions.

#The following code will force U[0] = U[N] = 0
D, x = cheb(N) #for some N

D2 = np.dot(D, D)

D2[0,:], D2[-1,:1 =0, O

D2[0,0], D2[-1,-1] =1, 1

F[0], F[-1]1 =0, O

122 Lab 14. Method of Mean Weighted Residuals

Problem 2. Use the pseudospectral method to solve the boundary value problem
u" =€, xe(-1,1),
u(=1) =0, wu(l)=0.

Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate v on
100 evenly spaced points. Compare your numerical solution with the exact solution,

— cosh(2) — sinh(2)x + e2*
1 :

u(z) =

Problem 3. Use the pseudospectral method to solve the boundary value problem

u' +u =€ xe(-1,1),
u(=1)=2, wu(l)=-1.

Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate u on
100 evenly spaced points.

The previous exercise involved setting up and solving a linear system

AU = F,

where F is a vector whose entries are e3*

evaluated at the collocation points x;, and U represents
the approximation to the solution u at those points. However, whenever the ODE is nonlinear, the
discretization becomes a nonlinear system of equations that must be solved using Newton’s method.
The next exercise contains a BVP whose ODE is nonlinear, with the additional complexity that the

domain of the problem is not [—1, 1].

Problem 4. Use the pseudospectral method to solve the boundary value problem

u” = Asinh(\u), z € (0,1),
w(0)=0, wu(l)=1
for several values of A\: A = 4,8,12. Begin by transforming this BVP onto the domain —1 <

x < 1. Use N = 20 in the cheb(N) method and use barycentric interpolation to approximate
u on 100 evenly spaced points.

Below is sample code for implementing Newton’s Method

from scipy.optimize import root

N = 20
D, x = cheb(20)

def F(U):
out = None #Set up the equation you want the root of.

123

#Make sure to set the boundaries correctly
return out #Newtons Method will update U until the output is all O's.

guess = None #Make your guess, same size as the cheb(N) output
solution = root(F, guess).x

Minimizing the Area of a Surface of Revolution

A surface of revolution that minimizes its area is an example of a larger class of surfaces called
minimal surfaces. A famous example of a minimal surface is a soap bubble. Soap bubbles minimize
their surface area while containing a fixed volume of air. This behavior extends to merged bubbles,
and a soap film whose boundary is a wire frame. Minimal surfaces have applications in molecular
engineering and material science, and general relativity, where they describe the apparent horizon of
a black hole.

Consider a function y(z) defined on [—1,1] satisfying y(—1) = a, y(1) = b. The area of the
surface obtained by revolving the graph of y(x) about the x-axis is given by

Tly(z)] = / 2y (2) /1 F (7' (@) do.

-1

To find the function y(x) whose surface of revolution minimizes surface area, we must minimize the
functional T'[y]. This is a classical problem from a branch of mathematics called the calculus of
variations. Standard derivatives allow us to find the minimum values of functions defined on R™,
and where they occur. The calculus of variations allows us to find the minimum values of functions
whose input are other functions.

From the calculus of variations we know that a necessary condition for y(z) to minimize T'[y]
is that the Euler-Lagrange equation must be satisfied:

d

Ly - %Ly/ - O,

where L(z,y,y") = 2ry/1 + (y')%. Simplifying the Euler-Lagrange equation for our problem results
in the ODE

yy" — (y)? —1=0.

Discretizing this ODE using the pseudospectral method results in the (nonlinear) system of equations
Y - (D?Y) - (DY) - (DY) =1,

where I is a vector of ones.

Problem 5. Find the function y(z) that satisfies y(—1) = 1, y(1) = 7, and whose surface of
revolution (about the z-axis) minimizes surface area. Compute the surface area, and plot the
surface. Use N = 50 in the cheb(N) method and use barycentric interpolation to approximate
u on 100 evenly spaced points.

Below is sample code for creating the 3D wireframe figure.

from mpl_toolkits.mplot3d import Axes3D

124 Lab 14. Method of Mean Weighted Residuals

*4‘4‘4*4*—ﬁ~—;4\4‘4‘4‘4a4*44‘4‘4V4\4‘4‘Aﬁgﬁf,___r;-é———"""';: -8
-1.0 -0.5 0.0 0.5 10 —g64202468

Figure 14.1: The minimal surface corresponding to Problem 5.

barycentric = None #This is the output of barycentric_interpolate() on <
100 points

lin = np.linspace(-1, 1, 100)

theta = np.linspace(0,2*np.pi,401)

X, T = np.meshgrid(lin, theta)

Y, Z = barycentric*np.cos(T), barycentric*np.sin(T)

fig = plt.figure()

ax = fig.gca(projection="3d")

ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
plt.show()

	to 20ptILabs
	Method of Mean Weighted Residuals

