Non-negative Matrix
Factorization
Recommender

Lab Objective: Understand and implement the non-negative matrix factorization for recommen-
dation systems.

Introduction

Collaborative filtering is the process of filtering data for patterns using collaboration techniques.
More specifically, it refers to making prediction about a user’s interests based on other users’ interests.
These predictions can be used to recommend items and are why collaborative filtering is one of the
common methods of creating a recommendation system.

Recommendation systems look at the similarity between users to predict what item a user is
most likely to enjoy. Common recommendation systems include Netflix’s Movies you Might Enjoy
list, Spotify’s Discover Weekly playlist, and Amazon’s Products You Might Like.

Non-negative Matrix Factorization

Non-negative matrix factorization is one algorithm used in collaborative filtering. It can be applied
to many other cases, including image processing, text mining, clustering, and community detection.
The purpose of non-negative matrix factorization is to take a non-negative matrix V and factor it
into the product of two non-negative matrices.

For Ve R™*" 0 < W,

minimize ||V —WH]||
subject to 0=<W,0<H
where W e R™*F H e RF*"

k is the rank of the decomposition and can either be specified or found using the Root Mean
Squared Error (the square root of the MSE), SVD, Non-negative Least Squares, or cross-validation
techniques.
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For this lab, we will use the Frobenius norm, given by
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It is equivalent to the square root of the sum of the diagonal of A” A

Problem 1. Create the NMFRecommender class, which will be used to implement the NMF
algorithm. Initialize the class with the following parameters: random_state defaulting to 15,
tol defaulting to le — 3, maxiter defaulting to 200, and rank defaulting to 2.

Add a method called initialize_matrices that takes in m and n, the dimensions of V.
Set the random seed so that initializing the matrices can be replicated.

>>> np.random.seed(self.random_state)

Then, using np.random. random, initialize W and H with randomly generated numbers between
0 and 1, where W € R™** and H € R**". Return W and H.

Finally, add a method called compute_loss() that takes as parameters V, W, and H and
returns the Frobenius norm of V. — WH.

Multiplicative Update

After initializing W and H, we iteratively update them using the multiplicative update step. There
are other methods for optimization and updating, but because of the simplicity and ease of this
solution, it is widely used. As with any other iterative algorithm, we perform the step until the tol
or maxiter is met.
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Problem 2. Add a method to the NMF class called update_matrices that takes as inputs
matrices V', W, H and returns Wy, and Hsy; as described in Equations 16.1 and 16.2.

Problem 3. Finish the NMF class by adding a method fit that finds an optimal W and H. It
should accept V as a numpy array, perform the multiplicative update algorithm until the loss
is less than tol or maxiter is reached, and return W and H.

Finally add a method called reconstruct that reconstructs and returns V by multiplying
W and H.
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Using NMF for Recommendations

Consider the following marketing problem where we have a list of five grocery store customers and
their purchases. We want to create personalized food recommendations for their next visit. We start
by creating a matrix representing each person and the number of items they purchased in different
grocery categories. So from the matrix, we can see that John bought two fruits and one sweet.

John Alice Mary Greg Peter Jennifer

0 1 0 1 2 2 Vegetables

2 3 1 1 2 2 Fruits
V=] 1 1 1 0 1 1 Sweets

0 2 3 4 1 1 Bread

0 0 0 0 1 0 Cof fee

After performing NMF on V', we’ll get the following W and H.

Componentl Component2 Component3

2.1 0.03 0. Vegetables
1.17 0.19 1.76 Fruits
W= 0.43 0.03 0.89 Sweets
0.26 2.05 0.02 Bread
0.45 0. 0. Cof fee

John Alice Mary Greg Peter Jennifer

0.00 0.45 0.00 0.43 1.0 0.9 Componentl
H=1000 091 145 1.9 0.35 0.37 Component2
1.14 122 0.55 0.0 047 0.53 Component3

W represents how much each grocery feature contributes to each component; a higher weight
means it’s more important to that component. For example, component 1 is heavily determined by
vegetables followed by fruit, then coffee, sweets and finally bread. Component 2 is represented almost
entirely by bread, while component 3 is based on fruits and sweets, with a small amount of bread.
H is similar, except instead of showing how much each grocery category affects the component, it
shows a much each person belongs to the component, again with a higher weight indicating that the
person belongs more in that component. We can see the John belongs in component 3, while Jennifer
mostly belongs in component 1.

To get our recommendations, we reconstruct V' by multiplying W and H.

John  Alice  Mary Greg  Peter Jennifer
0.0000 0.9723 0.0435 0.96  2.1105 1.9011 Vegetables

2.0064 2.8466 1.2435 0.8641 2.0637 2.0561 Fruits
WH =11.0146 1.3066 0.533 0.2419 0.8588 0.8698 Sweets
0.0228 2.0069 2.9835 4.0068 0.9869 1.0031 Bread
0.0000 0.2025 0.0000 0.1935  0.45 0.405 Cof fee

Most of the zeros from the original V' have been filled in. This is the collaborative filtering
portion of the algorithm. By sorting each column by weight, we can predict which items are more
attractive to the customers. For instance, Mary has the highest weight for bread at 2.9835, followed
by fruit at 1.2435 and then sweets at .533. So we would recommend bread to Mary.
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Another way to interpret W H is to look at a feature and determine who is most likely to buy
that item. So if we were having a sale on sweets but only had funds to let three people know, using
the reconstructed matrix, we would want to target Alice, John, and Jennifer in that order. This gives
us more information that V alone, which says that everyone except Greg bought one sweet.

Problem 4. Use the NMFRecommender class to run NMF on V, defined above, with 2 com-
ponents. Return W, H as matrices, and the number of people who have higher weights in
component 2 than in component 1 as a float.

Sklearn NMF

Python has a few packages for recommendation algorithms: Surprise, CaseRecommender and of
course SkLearn. They implement various algorithms used in recommendation models. We'll use
SkLearn, which is similar to the NMFRecommender class, for the last problems.

from sklearn.decomposition import NMF

>>> model = NMF(n_components=2, init='random', random_state=0)
>>> W = model.fit_transform(X)
>>> H = model.components_

As mentioned earlier, many big companies use recommendation systems to encourage purchas-
ing, ad clicks, or spending more time in their product. One famous example of a Recommendation
system is Spotify’s Discover Weekly. Every week, Spotify creates a playlist of songs that the user has
not listened to on Spotify. This helps users find new music that they enjoy and keeps Spotify at the
forefront of music trends.

Problem 5. Read the file artist_user.csv as a pandas dataframe. The rows represent users,
with the user id in the first column, and the columns represent artists. For each artist j that a
user ¢ has listened to, the ij entry contains the number of times user 7 has listened to artist j.

Identify the rank, or number of components to use. Ideally, we want the smallest rank that
minimizes the error. However, this rank may be too computationally expensive, as in this situa-
tion. We’ll choose the rank by using the following method. First, calculate the frobenius norm of
the dataframe and multiply it by .0001. This will be our benchmark value. Next, iterate through
rank = 3,4,5, .... For each iteration, run NMF using n_components=rank and reconstruct the
matrix V. Calculate the root mean square error using sklearn.metrics.mean_squared_error
of the original dataframe and the reconstructed matrix V. When the RMSE is less than the
benchmark value, stop. Return the rank and the reconstructed matrix of this rank.

Problem 6. Write a function discover_weekly that takes in a user id and the reconstructed
matrix from Problem 5, and returns a list of 30 artists to recommend as strings.

This list of strings should be sorted so that the first artist is the recommendation with
the highest weight and the last artist is the least, and it should not contain any artists that the
user has already listed to. Use the file artists.csv to match the artist ID to their name.
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As a check, the Discover Weekly for user 2 should return
['Britney Spears’, ’Avril Lavigne’, 'Rihanna’, "Paramore’, ’Christina Aguilera’,
"U2’, 'The Devil Wears Prada’, "Muse’, "Hadouken!”, ’Ke$ha’, ’Good Charlotte’,
"Linkin Park’, "Enter Shikari’, ’Katy Perry’, "Miley Cyrus’, "Taylor Swift’,
‘Beyoncé’, ’Asking Alexandria’, "The Veronicas’, ’Mariah Carey’, '"Martin L. Gore’,
"Dance Gavin Dance’, ’Erasure’, ’In Flames’, ’30H!3’, 'Blur’, 'Kelly Clarkson’,
’Justin Bieber’, ’Alesana’, ’Ashley Tisdale’]
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