
11 Gaussian Mixture
Models

Lab Objective: Understand the formulation of Gaussian Mixture Models (GMMs) and use the
Expectation Maximization algorithm to estimate GMM parameters.

Mixture models are a useful way to combine distributions together that allows us to describe
much more complicated distributions than using just the standard list of named distributions. The
essential idea of a mixture model is in its name: it is a mixture of several different models, or
probability distributions. Each of these model is called a component. Each component has a certain
probability associated with it, called its weight, that describes how likely it is for a sample from the
model to come from that component. We denote the weight of the i-th component as wi.

In this lab, we focus on Gaussian Mixture Models, or GMMs for short. In a GMM, each
component is a multivariate Gaussian (normal) distribution. Each of these is parameterized by a
mean µi and a covariance matrix Σi.

A GMM with K components thus has parameters θ = (w1, . . . , wK , µ1, . . . , µK ,Σ1, . . . ,ΣK).
We can use the law of total probability to evaluate the density of a GMM, which is given by

P (z|θ) =
K∑

k=1

wkN (z|µk,Σk)

where
N (z|µ,Σ) = 1√

det(2πΣ)
exp

(
−1

2
(z − µ)

T
Σ−1 (z − µ)

)
is the density function of a multivariate normal distribution.

It is important to keep in mind that a GMM does not arise from adding weighted multivariate
normal random variables, but rather from weighting the responsibility of each multivariate normal
random variable. The first case simply results in a different multivariate normal distribution. Refer
to Figure 11.1 for a visualization of these two cases.

Problem 1. Throughout this lab, we will build a GMM class with various methods. Write the
__init__ method for this class. It should accept a parameter for the number of components and
optional parameters for the weights, means, and covariance matrices which define the GMM,
and store these.a

99

100 Lab 11. Gaussian Mixture Models

(a) Sum of weighted multivariate normal random vari-
ables.

(b) Weighted mixture of multivariate normal random
variables.

Figure 11.1

If we have K components and d dimensions, then the weights should have shape (K,),
the means (K,d), and the covariances (K,d,d). The parameters for the k-th component can
be found as weights[k], means[k], covars[k].

aIf we don’t have a good guess for the parameters of the GMM to pass into the class, it makes more sense to
initialize these from the dataset we are training on, which we will do later in the fit method; hence, we let the
parameters be optional here.

Problem 2. Write a method component_logpdf for your class that accepts a component k
and a point z and computes

logwk + logN (z|µk,Σk),

the logarithm of the contribution of the k-th component of the pdf. Also write a method pdf
that accepts a point z and returns the probability density of the whole GMM at that point.

Hint: scipy.stats.multivariate_normal.pdf and scipy.stats.multivariate_normal
.logpdf can be used to efficiently evaluate the multivariate normal pdf.

To test your functions, create the following GMM:

gmm = GMM(n_components = 2,
weights = np.array([0.6, 0.4]),
means = np.array([[-0.5, -4.0], [0.5, 0.5]]),
covars = np.array([

[[1, 0],[0, 1]],
[[0.25, -1],[-1, 8]],

]))

Your functions should give the following output:

101

>>> gmm.pdf(np.array([1.0, -3.5]))
0.05077912539363083
Component 0
>>> gmm.component_logpdf(0, np.array([1.0, -3.5]))
-3.598702690175336
Component 1
>>> gmm.component_logpdf(1, np.array([1.0, -3.5]))
-3.7541677982835004

Note that since this GMM is 2-dimensional, the input point must be an array of length 2.

In order to draw a value from a mixture model, we must first draw a variable X ∼ Cat(w1, . . . , wK)

that represents which component the sample comes from. We can then draw the sample Z ∼
N (µX , σX).

Problem 3. Write a method draw for the GMM class that randomly draws from the model.
If m points are drawn and the GMM is d-dimensional, the returned array should have shape
(m,d).

Draw a sample of 10,000 points from the GMM defined in Problem 2. Plot the pdf of
the GMM (using plt.pcolormesh) and a hexbin plot of the drawn points. How do the plots
compare?

The following code can be used to plot the pdf:

Create the grid to plot on
x = np.linspace(-8,8,100)
y = np.linspace(-8,8,100)
X, Y = np.meshgrid(x, y)
Calculate the pdf at each point
If your pdf function uses array broadcasting, you can do the following:
Z = gmm.pdf(np.dstack((X,Y)))
Otherwise, you need to iterate over each point:
Z = np.array([[

gmm.pdf([X[i,j], Y[i,j]]) for j in range(100)
] for i in range(100)

])
Create the plot
plt.pcolormesh(X, Y, Z, shading='auto')

We now consider how to estimate the parameters of a GMM given some observed data Z =

z1, . . . , zn. Ordinarily, a good approach would be to try to directly maximize the log-likelihood

l(θ) =

n∑
i=1

log

K∑
j=1

wjN (zi|µj ,Σj).

102 Lab 11. Gaussian Mixture Models

However, this expression is very difficult to deal with using standard optimization methods, partic-
ularly because of the sum inside of the logarithm. A good alternative in this case is the expectation
maximization (EM) algorithm. This is an iterative algorithm, where each step consists of maximizing
a function that is designed to approximate the log-likelihood while being much easier to maximize.

Each iteration consists of two steps, the E-step and the M-step. Suppose our estimated param-
eters at the t-th iteration are θt = (wt

1, . . . , w
t
K , µt

1, . . . , µ
t
K ,Σt

1, . . . ,Σ
t
K). Note that t is an index, not

an exponent. For each data point zi, 1 ≤ i ≤ n and each component 1 ≤ k ≤ K, the E-step consists
of computing

qti(k) = P (Xi = k|zi, θt)

=
P (zi|Xi = k, θt)

P (zi|θt)

=
wt

kN (zi|µt
k,Σ

t
k)∑K

k′=1 w
t
k′ N (zi|µt

k′ ,Σt
k′)

In order to accurately compute this quantity, however, we need to be more careful. It is
possible that due to floating point underflow1 that each term wt

k′ N (zi|µk′ ,Σk′) in the sum in the
denominator becomes zero, which is a major problem. This particularly happens if the exponents
in the multivariate normal densities all are large negative numbers. To avoid this problem, we can
rescale the numerator and denominator. Let

ℓi,k = logwt
k + logN (zi|µt

k,Σ
t
k),

the logarithm of each term in the denominator. For each data point zi, we can find

Li = max
k′

ℓi,k′ ,

the largest of these logarithms. Then, we can rewrite the quantity we want to calculate as

qti(k) =
wt

kN (zi|µt
k,Σ

t
k)∑K

k′=1 w
t
k′ N (zi|µt

k′ ,Σt
k′)

=
eℓi,k∑K

k′=1 e
ℓi,k′

=
eℓi,ke−Li∑K

k′=1 e
ℓi,k′ e−Li

=
eℓi,k−Li∑K

k′=1 e
ℓi,k′−Li

.

This rescaling makes the largest term in the denominator equal to 1, so computing qti(k) in this way
avoids underflow problems. Note that for the computation of any individual qti(k), the value Li is
a scalar that is the same for all components; however, you will have as many of these values as you
have data points.

1As a refresher, one way that floating point numbers are limited is that they cannot represent positive numbers
arbitrarily close to zero; at some point, if the number in a computation becomes too small, the computer is forced
to round it to zero, which is called underflow. The threshhold is about 10−323 for the 64-bit floating point numbers
used in python. Even if underflow does not occur, very small floating points have greatly reduced precision, so it is
generally good to avoid using them.

103

Problem 4. Write a method _compute_e_step that calculates the qti(k) as given by the E-
step, given a collection of observations. Be sure to do the calculation in a way that avoids
underflow, and use array broadcasting when possible.

Now that we have the qti(k), we can perform the M-step. This step consists of maximizing the
function

Qt(θ) =

n∑
i=1

K∑
k=1

qti(k) logw
t
kN (zi|µk,Σk)

We then set
θt+1 = argmax

θ
Qt(θ)

and iterate until the method appears to converge. In the case of GMMs, the maximizer θt+1 of Qt(θ)

is given by

wt+1
k =

1

n

n∑
i=1

qti(k)

µt+1
k =

∑n
i=1 q

t
i(k)zi∑n

i=1 q
t
i(k)

Σt+1
k =

∑n
i=1 q

t
i(k)(zi − µt+1

k)(zi − µt+1
k)⊤∑n

i=1 q
t
i(k)

For details on the derivation of the maximizer, refer to the Volume 3 textbook.

Problem 5. Write a method _compute_m_step for your GMM class that performs a single
iteration of the EM algorithm. Return the updated parameters, as given by the M-step. Be
sure to use array broadcasting when possible.

Problem 6. Write a fit method for your GMM class.
First, if the GMM’s parameters are uninitialized (set to None), initialize the parameters

of the components. We want to do this in a way that the algorithm starts with reasonable
values for the dataset. A good way to initialize the means is to randomly select points from the
dataset. The covariance matrices can be initialized as diagonal matrices based on the variance
of the data. Ensure that the weights you choose add up to 1.

Then, perform the expectation maximization algorithm. Use the functions you created
in Problems 4 and 5 to calculate the parameters at each step. Repeat until the parameters
converge. Use the following to measure the change in the parameters with each iteration:

change = (np.max(np.abs(new_weights - old_weights))
+ np.max(np.abs(new_means - old_means))
+ np.max(np.abs(new_covars - old_covars)))

104 Lab 11. Gaussian Mixture Models

Problem 7. The file problem7.npy contains a collection of data drawn from a two-dimensional
GMM. Train a GMM on this data with n_components=3. Plot the pdf of your trained GMM
(in the same way as in Problem 3), as well as a hexbin plot of the data. Your class should take
less than 15 seconds to train on this dataset.

Clustering with GMMs
An important use of mixture models is for clustering. The objective of clustering is to take an
unlabeled dataset and separate it into some number of clusters, which can then be labeled. This is
an instance of unsupervised learning, as it is a machine learning task where the the training algorithm
does not need the true answers (in this case, the actual clusters).

In order to cluster a dataset using a GMM, we first need to train the GMM on that data. Then,
we can assign each point a label by finding which component has the largest contribution to the pdf
there. Written symbolically, for a data point z, we have

Cluster(z) = argmaxkwkN (z|µk,Σk).

Note that the number of clusters (components) is a hyperparameter that must be selected before a
GMM is trained. In general, cross-validation or some other method must be used to find the right
number of clusters.

Problem 8. Write a predict method for your class. Given a set of data points, return which
cluster has the highest pdf density for each data point.

The file classification.npz contains a set of 3-dimensional data points (X) and their
labels (y). Use your class with n_components=4 to cluster the data. Plot the points with the
predicted and actual labels, and compute and return your model’s accuracy. Your class should
take less than 30 seconds to train on this dataset.

Note that the labels may be permuted; for instance, your model might cluster the points
correctly, but swap the labels of clusters 1 and 2 compared to the true labels. The model would
still be considered accurate in this case; we only care what the clusters are, not how the model
labels them. To resolve this problem, we need to find the permutation of the labels that results
in the highest accuracy. The following function does this in a way that is more efficient than
directly checking all permutations:

from scipy.optimize import linear_sum_assignment
from sklearn.metrics import confusion_matrix

def get_accuracy(pred_y, true_y):
"""
Helper function to calculate the actually clustering accuracy,
accounting for the possibility that labels are permuted.
"""
Compute confusion matrix
cm = confusion_matrix(pred_y, true_y)
Find the arrangement that maximizes the score
r_ind, c_ind = linear_sum_assignment(cm, maximize=True)

105

return np.sum(cm[r_ind, c_ind]) / np.sum(cm)

For convenience, a method fit_predict for the class is also included in the specifications
file that calls both fit and predict to make the clustering process simpler.

Clustering with GMMs is closely related to the K-means algorithm. In fact, K-means can be
viewed as a special case of GMMs. We now compare the effectiveness of GMMs for classification on
this dataset with K-means, as well as comparing to sklearn’s implementation.

Problem 9. Again using classification.npz, compare your class, sklearn’s GMM imple-
mentation, and sklearn’s K-means implementation for speed of training and for accuracy of the
resulting clusters. Print your results. Be sure to check for permuted labels.

You should find that sklearn’s GMM is actually faster on this dataset than K-means. This is in part
because the dataset is rather low-dimensional. As the dimension of the dataset grows, GMMs suffer
computationally from the curse of dimensionality much more than the K-means algorithm.

	to 20ptILabs
	Gaussian Mixture Models

