
13 Speech Recognition
using CDHMMs

Lab Objective: Understand how speech recognition via CDHMMs works, and implement a sim-
plified speech recognition system.

13.0.1 Continuous Density Hidden Markov Models

Some of the most powerful applications of Hidden Markov Models, speech and voice recognition,
result from allowing the observation space to be continuous instead of discrete. These are called
Continuous Density Hidden Markov Models (CDHMMs), and they have two standard formulations:
Gaussian HMMs and Gaussian Mixture Model HMMs (GMMHMMs). The former is a special case
of the latter, so we will just discuss GMMHMMs in this lab.

In order to understand GMMHMMs, we need to be familiar with a particular continuous,
multivariate distribution called a mixture of Gaussians. A mixture of Gaussians is a distribution
composed of several Gaussian distributions with corresponding weights. Such a distribution is pa-
rameterized by the number of mixture components K (where each component is a Gaussian distri-
bution), the dimension M of the normal distributions involved, a collection of component weights
{c1, . . . , cK} that are nonnegative and sum to 1, and a collection of mean and covariance parameters
{(µ1,Σ1), . . . , (µK ,ΣK)} for each Gaussian component. To sample from a mixture of Gaussians, one
first chooses the mixture component i according to the probability weights {c1, . . . , cK}, and then
one samples from the normal distribution N (µk,Σk). The probability density function for a mixture
of Gaussians is given by

p(z|θ) =
K∑

k=1

ckN(z; µk,Σk),
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Figure 13.1: The probability density function of a mixture of Gaussians with four components.

where N( · ; µk,Σk) denotes the probability density function for the normal distribution N (µk,Σk).
See Figure 13.1 for the plot of such a density curve. Note that a mixture of Gaussians with just
one mixture component reduces to a simple normal distribution, and so a GMMHMM with just one
mixture component is simply a Gaussian HMM.

Similar to discrete HMMs, GMMHMMs seek to model a hidden state sequence {X1, . . . , XT }
and a corresponding observation sequence {Z1, . . . , ZT } where T is the number of time steps or num-
ber of observations. The major difference is that each observation zt is a real-valued vector of length
M distributed according to a mixture of Gaussians with K components. The parameters for such
a model include the initial state distribution π and the state transition matrix A (just as with dis-
crete HMMs). Additionally, for each state i = 1, . . . , N , we have component weights {ci,1, . . . , ci,K},
component means {µi,1, . . . , µi,K}, and component covariance matrices {Σi,1, . . . ,Σi,K}.

Let’s define a full GMMHMM with N = 3 states, components of dimension M = 2, and K = 5

components.

>>> import numpy as np

# 3x3 transition matrix
>>> A = np.array([[.6, .3, .1], [.2, .3, .5], [.7, .1, .2]])
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# 3x5 collection of component weights
>>> weights = np.array([[.5, .1, .25, .09, 0.6], [0, .4, .3, .2, .1], [.1, .3, ←↩

.2, .1, .3]])

# 3x5x2 collection of component means
>>> means = np.array([np.floor(np.random.uniform(-20, 20, size = (5, 2))) for i←↩

in range(3)])

# 3x5x(2x2) collection of component covariance matrices
>>> covars = np.array([[np.floor(np.random.uniform(1, 20))*np.eye(2) for i in ←↩

range(5)] for j in range(3)])

# (3,) ndarray initial state distribution
>>> pi = np.array([.4, .1, .5])

# Save the model parameters
>>> gmm = [A, weights, means, covars, pi]

Once we have a GMMHMM, we can randomly choose the first state based on the initial state
distribution π. Now we can iteratively sample from our GMMHMM as follows:

• Randomly select a GMM Gaussian component according to the probability weights of the
current state.

• Sample from the selected GMM Gaussian component using the corresponding mean and co-
variance matrix.

• Obtain the next state using the transition matrix A.

# choose initial state
>>> state = np.argmax(np.random.multinomial(1, pi))

# steps to randomly sample from GMMHMM
# randomly select a component using the probability weights of the current ←↩

state
>>> sample_component = np.argmax(np.random.multinomial(1, weights[state,:]))

# sample an observation from the selected GMM Gaussian component
>>> sample = np.random.multivariate_normal(means[state, sample_component, :], ←↩

covars[state, sample_component, :, :])

# obtain the next state using the transition matrix
>>> state = np.argmax(np.random.multinomial(1, A[:, state]))

Figure 13.2 shows an observation sequence generated from a GMMHMM with two mixture
component and two states.
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Figure 13.2: An observation sequence generated from a GMMHMM with two mixture components
and two states. The observations (points in the plane) are shown as solid dots, the color indicating
from which state they were generated. The connecting dotted lines indicate the sequential order of
the observations.

Problem 1. Write a function which accepts a GMMHMM in the format above as well as an
integer T , and which simulates the GMMHMM process, generating T different observations.
Do so by implementing the following function declaration.

def sample_gmmhmm(gmmhmm, T):
"""
Simulate sampling from a GMMHMM.

Returns
-------
states : ndarray of shape (T,)

The sequence of states
obs : ndarray of shape (T, M)

The generated observations
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"""
pass

Test your function by running it on the gmmhmm given in the example, with T = 900. Use
sklearn.decomposition.PCA with 2 components to plot the observations in two-dimensional
space. Color the observations by state. How many clusters do you see?
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The classic problems for which we normally use discrete observation HMMs can also be solved
by using CDHMMs, though with continuous observations it is much more difficult to keep things
numerically stable. We will not have you implement any of the three problems for CDHMMs yourself;
instead, you will use a stable module we will provide for you. Note, however, that the techniques for
solving these problems are still based on the forward-backward algorithm; the implementation may
be trickier, but the mathematical ideas are virtually the same as those for discrete HMMs.

Speech Recognition and Hidden Markov Models

Hidden Markov Models are the basis of modern speech recognition systems. However, a fair amount of
signal processing must precede the HMM stage, and there are other components of speech recognition,
such as language models, that we will not address in this lab.

The basic signal processing and HMM stages of the speech recognition system that we develop
in this lab can be summarized as follows: The audio to be processed is divided into small frames
of approximately 30 ms. These are short enough that we can treat the signal as being constant
over these inervals. We can then take this framed signal and, through a series of transformations,
represent it by mel-frequency cepstral coefficients (MFCCs), keeping only the first M (say M = 10).
Viewing these MFCCs as continuous observations in RM , we can train a GMMHMM on sequences of
MFCCs for a given word, spoken multiple times. Doing this for several words, we have a collection
of GMMHMMs, one for each word. Given a new speech signal, after framing and decomposing it
into its MFCC array, we can score the signal against each GMMHMM, returning the word whose
GMMHMM scored the highest.

Industrial-grade speech recognition systems do not train a GMMHMM for each word in a
vocabulary (that would be ludicrous for a large vocabulary), but rather on phonemes, or distinct
sounds. The English language has 44 phonemes, yielding 44 different GMMHMMs. As you could
imagine, this greatly facilitates the problem of speech recognition. Each and every word can be
represented by some combination of these 44 distinct sounds. By correctly classifying a signal by
its phonemes, we can determine what word was spoken. Doing so is beyond the scope of this lab,
so we will simply train GMMHMMs on five words/phrases: biology, mathematics, political science,
psychology, and statistics.

Problem 2. Samples.zip contains 30 recordings for each of the words/phrases mathematics,
biology, political science, psychology, and statistics. Remove the files that end in 00 (eg. Biol-
ogy00.wav). These audio samples are 2 seconds in duration, recorded at a rate of 44100 samples
per second, with samples stored as 16-bit signed integers in WAV format. Load the recordings
into Python using scipy.io.wavfile.read.

Extract the MFCCs from each sample using code from the file MFCC.py. Store the
MFCCs for each word in a separate list. You should have five lists, each containing 30 MFCC
arrays, corresponding to each of the five words under consideration.

To load and extract, use the following code:

>>> samplerate, data = wavfile.read(file) # load wavfile
>>> model = MFCC.extract(data, show = False) # extract MFCC
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For a specific word, given enough distinct samples of that word (decomposed into MFCCs),
we can train a GMMHMM. Recall, however, that the training procedure does not always produce a
very effective model, as it can get stuck in a poor local minimum. To combat this, we will train 10
GMMHMMs for each word (using a different random initialization of the parameters each time) and
keep the model with the highest log-likelihood.

For training, we will use the python package called hmmlearn, as this is a stable implementation
of GMMHMM algorithms. To facilitate random restarts, we need a function to provide initializations
for the initial state distribution and the transition matrix.

Let data be a list of arrays, where each array is the output of the MFCC extraction for a
speech sample. Using a function initialize() that returns a random initial state distribution and
row-stochastic transition matrix, we can train a GMMHMM with 5 states and 3 mixture components
and view its score as follows:

>>> import numpy as np # Import packages
>>> from hmmlearn import hmm
>>> startprob, transmat = initialize(5) # Get probabilities and transition ←↩

matrices
>>> model = hmm.GMMHMM(n_components=5, covariance_type="diag", init_params = "←↩

mc") # Initialize model
>>> model.startprob_ = startprob # Set probabilities and transition matrices
>>> model.transmat_ = transmat
>>> data = train_samples[word] # Reshape data for hmmlearns fit method
>>> lengths = [data[0].shape[0]] * len(data)
>>> data_collected = np.vstack(data)
>>> model.fit(data_collected) # Fit the model
>>> model.monitor_.history[-1] # Check the score

Achtung!

The process for problem 3 could take up to a couple of hours. Since you will not want to run
this more than once, you may want to save the best model for each word to disk using the
pickle module so you can use it later.

>>> import pickle
>>> temp = {word: best_model}
>>> with open(word, "wb") as out:
... pickle.dump(temp, out)

Problem 3. Partition each list of MFCCs into a training set of 20 samples, and a test set of
the remaining 10 samples. Using the training sets, train a GMMHMM on each of the words
from the previous problem with at least 10 random restarts (reinitializing and creating a new
model). Use n_components = 5 and initialize(5). Keep the best model for each word (the
one with the highest log-likelihood).
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Given a trained model, we would like to compute the score of a new sample. Letting obs be an
array of MFCCs for a speech sample we do this as follows:

>>> score = model.score(obs)

We classify a new speech sample by scoring it against each of the 5 trained GMMHMMs, and returning
the word corresponding to the GMMHMM with the highest score.

Problem 4. Classify the 10 test samples for each word.
How does your system perform? Which words are the hardest to correctly classify? Make

a dictionary containing the accuracy of the classification of your five testing sets. Specifically,
the words/phrases will be the keys, and the values will be the percent accuracy. For example,
to find the accuracy for the biology model score (model.score(sample)) each model on all 10
samples in the biology test set. The predicted class for each sample is the class of the model
with the highest score. The accuracy of the biology model is the number of words in the biology
test set that the biology model gave the highest score for over ten, since there were 10 words
in the test set.
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