
5 Linear Regression

Lab Objective: This section will introduce the basics of Linear Regression, feature selection
methods, and regularization.

Introduction to Linear Regression
One of the first skills taught in basic algebra is to effectively plot the line y = mx+ b which can be
done with two points. But what if we want to find the line that best fits a set of points?

In this case, we can use the simplest form of linear regression: Ordinary Least Squares (OLS).
Given data as a set of points D = {(x1, y1), . . . , (xn, yn)} we wish to find the line that best fits the
data. The line is given by y = mx + b where m and b are unknown constants and x and y are the
independent and dependent variables respectively. Using OLS, let

yi = mxi + b+ εi

describe the ith point in D for each i ∈ {1, . . . , n}. Note that εi is the vertical distance from the ith

point to the line given by y = mx+ b and is often called the residual or the error.
The n equations for each point in D can be written in vector notation. Let the x and y

coordinates of D be represented by column vectors x and y respectively. In statistical science, the
intercept (b) and slope (m) are denoted as β0 and β1 respectively and[

b

m

]
=

[
β0

β1

]
= β.

Additionally, the residuals are represented by a column vector ε and 1 is a column vector of ones.
So we have

y = mx+ 1b+ ε = [1,x] ·
[
b

m

]
+ ε.

Denoting X = [1,x], we have our final equation given as

y = Xβ + ε.

This notation may seem excessive, but suppose we wanted to fit a model of the form y = ax3+ bx2+

cx + d A little work can show that X = [1,x,x2,x3] and β = [β0, β1, β2, β3]
T , which is very easy

to work with. Thus, this notation is actually the ideal way to generalize linear regression, especially
when working with higher degree polynomials.

45

46 Lab 5. Linear Regression

The solution to OLS is straight forward with some important assumptions. Sparing you the
algebraic details and assuming that y ∼ N (Xβ, σ2I) and ε ∼ N (0, σ2I) and I is the identity matrix,
the least squares estimator for β is given as

β̂ = (XTX)−1XTy. (5.1)

Problem 1. Write a function that takes as input X and y. In your function, add a column
of ones to X to account for β0. Call this function ols. This function should return the least
squares estimator for β as a numpy array.

Hint: Use functions from numpy or scipy to calculate a matrix inverse

Problem 2. Use the following code to generate random data.

n = 100 # Number of points to generate
X = np.arange(100) # The input X for the function ols
eps = np.random.uniform(-10,10, size=(100,)) # Noise to generate random y ←↩

coordinates
y = .3*X + 3 + eps # The input y for the function ols

Find the least squares estimator for β using this random data. Produce a plot showing the
random data and the line of best fit determined by the least squares estimator for β. Your plot
should include a title, axis labels, and a legend.

Hint: Since ols takes X without a column of ones, slice X when you call ols.

Rank-Deficient Models
Notice that in order to find the least squares estimator β̂, we need XTX to be invertible. However,
when X does not have full rank, the product XTX is singular and not invertible. We can no longer
use the previous solution for the least squares estimator, but we can use the SVD and still compute
a solution.

Recall that if X ∈Mn×d has rank r, then the compact form of the SVD of X is

X = UΣV H

where U ∈Mn×r and V ∈Mr×d have orthonormal columns and Σ ∈Mr×r is diagonal. In addition,
if X is real, then the factors U , Σ, and V H are also real. In this lab we assume X is real. As described
in Volume 1, there is a unique solution for the least squares estimator given by

β̂ = V Σ−1UTy. (5.2)

Problem 3. Write a function that finds the least squares estimator for rank-deficient models
using the SVD. The function should still take X and y as inputs. In your function, add a column
of ones to X to account for β0. Call the function svd_ols and return the least squares estimator
for β as a numpy array.

47

Hint: Use np.linalg.svd to factor X and use the argument full_matrices=False.

Problem 4. Use the following code to generate random data:

x = np.linspace(-4, 2, 500)
y = x**3 + 3*x**2 - x - 3.5
eps = np.random.normal(0, 3, len(y)) # Create noise
y += eps # Add noise to randomize data

Now use your function svd_ols to find the least squares estimator for a cubic polynomial.
Create a plot that shows a scatter plot of the data and a curve using the least squares estimator.
Your plot should include a title, axis labels, and a legend.

Model Accuracy

Residual Sum of Squares

The Residual Sum of Squares (RSS) is a common choice of measure for the quality of a model. The
formula for RSS is given by

RSS = ||y −Xβ̂||22.

Notice that the RSS measures the variance in the error of the model. So relative to other models, a
smaller RSS value indicates a more accurate model.

Coefficient of Determination

Another method of model accuracy is the Coefficient of Determination, denoted R2. In the case of
linear regression,

R2 = 1− RSS∑n
i=1(yi − ȳ)2

and ȳ = 1
n

∑n
i=1 yi is the sample mean of y. The intuition of R2 is that the ratio of the average

residual and biased sample variance of y is approximately the total variance explained by the model.
A larger R2 corresponds to a model that fits better. However, R2 comes with flaws such as being
able to take negative values, rewarding overfitting, and punishng under-fit models. Because of this,
we typically want to use other methods for model accuracy.

Python Example
There are various python packages that can be used to calculate R2, but we will use statsmodels
in this lab. Below is an example of how to build a model and extract R2 using statsmodels.

import statsmodels.api as sm
data = pd.read_csv("/filepath") # Read in data as pandas dataframe
y = data["dependent_variable"] # Extract dependent variable
temp_X = data[["var_1", ..., "var_n"]] # Extract independent variables

48 Lab 5. Linear Regression

X = sm.add_constant(temp_X) # Add column of 1's
model = sm.OLS(y, X).fit() # Fit the linear regression model
print(model.rsquared) # Print the R squared value

Problem 5. The file realestate.csv contains transaction data from 2012-2013. It has columns
for transaction data, house age, distance to nearest MRT station, number of convenience stores,
latitude, longitude, and house price of unit area. a Each row in the array is a separate mea-
surement.

Find the combination of variables that builds the model with the best R2 value when
predicting house price of unit area. Use statsmodels to build each model and calculate
R2. Using the same combination of variables, time the methods ols, svd_ols, and statsmodels
. Return a list with the first element being a tuple of times for each method and the second
element being the best R2 value from the first part of the problem.

Hint: The combinations method from the itertools package will be very helpful for
finding all feature combinations.

aSee https://www.kaggle.com/datasets/quantbruce/real-estate-price-prediction?resource=download.

Feature Selection

Every regression model consists of features or variables used to predict a dependent variable or
result. An important question to ask when building regression models is, which features are the
most important in predicting the dependent variable? In addition to being used for model accuracy,
R2 can also be used in feature selection, as it was in Problem 5. It still has the same pitfalls of
rewarding overfitting and punishing under-fit models, but it can be a useful tool used in conjunction
with the following tools for feature selection. While there are other methods for implementing feature
selection, most incorporate the p-value and are not included in this lab.

Akaike’s Information Criterion (AIC)

A simple motivation for AIC is based on balancing goodness of fit and prescribing a penalty for model
complexity. A more rigorous motivation for AIC is given in Volume 3 using the Kullback-Leibler (KL)
divergence. Given two models, f and g, the KL divergence is given by

KL(f, g) =

∫
f(z) log

(
f(z)

g(z)

)
dz

and it measures the amount of information lost when g is used to model f . Thus, a lower AIC
value indicates a better model. Additionally, AIC penalizes the size of the parameter space with a
coefficient of 2 which allows for slightly more complex models.

https://www.kaggle.com/datasets/quantbruce/real-estate-price-prediction?resource=download

49

Bayesian Information Criterion (BIC)

Instead of estimating the KL-divergence between the model in question and the true model, BIC has
the property of being minimized precisely when the posterior probability of a model, given the data,
is maximized. The equations for AIC and BIC only differ with one term: the coefficient weighting
the size of the parameter space. The coefficient for BIC is log(n) which is generally much larger than
2. As a result, BIC penalizes complex models more than AIC. The difference in AIC and BIC values
will grow from having more data points.

When using AIC or BIC for feature selection, you need to consider how you want to penalize
features in your model. If you want to exclude irrelevant features, then use BIC. If you want to keep
all features that are relevant, then use AIC. In other words, BIC is more likely to choose too small
a model, and AIC is more likely to choose too large a model.

Python Example

There are multiple ways to calculate AIC and BIC with various python packages. We will use the
package statsmodels for the following problem. When constructing X for statsmodels, do not add
the column of 1’s manually because statsmodels has a method that will do this for us.

import statsmodels.api as sm
data = pd.read_csv("/filepath") # Read in data as pandas dataframe
y = data["dependent_variable"] # Extract dependent variable
temp_X = data[["var_1", ..., "var_n"]] # Extract independent variables
X = sm.add_constant(temp_X) # Add column of 1's
model = sm.OLS(y, X).fit() # Fit the linear regression model
print(model.aic) # or print(model.bic)

Problem 6. Use the file realestate.csv and the Python Example above as a template for
constructing y and X and calculating model AIC and BIC. For the dependent variable, use
house price of unit area. For the independent variables, use distance to the nearest
MRT station, number of convenience stores, latitude, and longitude.

Find the model that has the lowest AIC and the model that has the lowest BIC. Are they
the same model? Print the features of the model with the lowest AIC as a list.

Hint: The combinations method from the itertools package will be very helpful for
finding all feature combinations.

Regularization

Up to this point, we have been solving the problem

min
β
||Xβ − y||22.

50 Lab 5. Linear Regression

However, we have also assumed independence among the features used to predict the dependent
variable. The pitfall of multicollinearity arises when the features of X have dependence and X

becomes nearly singular. As a result, the least squares estimator is susceptible to random noise or
error. Multicollinearity typically occurs when data is collected with poor experimental design. It is
important to have good experimental design, but regularization can be used to mitigate poor design.
Another issue OLS faces is feature selection. While there are feature selection methods available,
regularization can be used to minimize non-zero coefficients.

Ridge Regularization Regression

The problem posed by Ridge Regularization is

min
β
||Xβ − y||22 + α||β||22

where α ≥ 0. This essentially penalizes the size of the coefficients. The larger α is, the more the
model resists multicollinearity.

Lasso Regularization Regression

The problem posed by Lasso Regularization is

min
β

1

n
||Xβ − y||22 + α||β||1.

Note that α provides the same functionality here as it does in Ridge Regularization. However, the
use of the 1-norm often results in sparse solutions. As a result, Lasso Regularization can be used for
feature selection since it only includes the most important features.

Python Example

Since α is not a fixed value in Ridge and Lasso Regularization, it is best practice to perform a Grid-
Search to find the best parameter value. The example below goes over the syntax for implementing
Ridge Regularization. Note that the syntax for Lasso Regularization is similar.

>>> from sklearn import linear_model
>>> y = # dependent variable data
>>> X = # independent variable data with no column of ones
>>> reg = linear_model.RidgeCV(alphas=np.logspace(-6, 6, 13)) # Range for grid ←↩

search
>>> reg.fit(X, y) # Fit the model
>>> reg.alpha_ # Best parameter value

Problem 7. Use Ridge and Lasso Regression to model house price of unit area from the
file realestate.csv. First, do a grid search for the model parameter. Then use the grid search
result to fit the model. Once you have fit the model, you can use the score method to get R2.
Print R2 for each model as a tuple. How do these models compare to the models in problem 6?

	to 20ptILabs
	Linear Regression

