
12 The Finite Element
method

Lab Objective: The finite element method is commonly used for numerically solving partial
differential equations. We introduce the finite element method via a simple BVP describing the
steady state distribution of heat in a pipe as fluid flows through.

Advection-Diffusion of Heat in a Fluid
We wish to study the distribution of heat in a fluid that is moving at some constant speed a. Let
y denote the temperature of the fluid at any given location and time. The equation modeling this
situation can be obtained from the differential form of the conservation law, where the flux is the
sum of a diffusive term −εyx and an advection (or transport) term ay:

J = ay − εyx
The one-dimension conservation law states that y must then obey the partial differential equation
yt + Jx = f(x), where f represents heat sources in the system. Since Jx = ayx− εyxx, we obtain the
advection-diffusion equation

yt + ayx = εyxx + f(x).

As time progresses, we expect the temperature of the fluid in the pipe to reach a steady state
distribution, with yt = 0. Once this steady state has been reached, the heat distribution y then
satisfies the ODE

εy′′ − ay′ = −f(x).

We consider the scenario of a fluid flowing through a pipe from x = 0 to x = 1 with speed
a = 1, and as it travels it is warmed at a constant rate f(x) = 1. Note that since this a second-order
ODE, we need two boundary conditions. Suppose that the fluid is already at a known temperature
y = 2 as it enters the pipe. This imposes the boundary condition y(0) = 2. Suppose further that
a device is installed on the end of the pipe that nearly instantaneously brings the heat of the water
up to y = 4. Physically, we expect this extra heat that is introduced at x = 1 to diffuse backward
through the water in the pipe and thus influence the steady-state temperature. Putting this together
leads to a well defined BVP:

εy′′ − y′ = −1, 0 < x < 1,

y(0) = 2, y(1) = 4.
(12.1)

The analytic solution for ε = 0.1 is shown in Figure 12.1.

103

104 Lab 12. The Finite Element method

0.0 0.2 0.4 0.6 0.8 1.0
2.0

2.5

3.0

3.5

4.0

Figure 12.1: The analytic solution of (12.1) for ε = 0.1.

The Weak Formulation
Stepping back momentarily, consider the equation

εy′′ − y′ = −f, 0 < x < 1,

y(0) = α, y(1) = β.
(12.2)

To approximate the solution y using the finite element method, we reframe the problem into one
involving integrals, known as its weak formulation.

Let w be a smooth function on [0, 1] satisfying w(0) = w(1) = 0. Multiplying (12.2) by w and
integrating over [0, 1] yields ∫ 1

0

−fw dx =

∫ 1

0

(εy′′w − y′w) dx,

=

∫ 1

0

(−εy′w′ − y′w) dx,

where the second equality follows by integration by parts. For notational convenience, define the
functionals a and l by

a(y, w) =

∫ 1

0

−εy′w′ − y′w dx,

l(w) =

∫ 1

0

−fw dx.

Then, any solution to (12.2) will also satisfy

a(y, w) = l(w) (12.3)

105

This equation is the weak formulation of (12.2). Note that any solution to the original ODE is also a
solution to the weak formulation. However, solutions to the weak formulation need not be solutions
to the original ODE, as they may not even be differentiable everywhere. While this may seem like an
undesirable property, it allows us to use a wider variety of functions to approximate the true solution.

Now, we choose some appropriate vector space V of functions, and consider the problem of
finding a function y ∈ V that satisfies the weak formulation (12.3) for all w ∈ V0 = {w ∈ V |w(0) =
w(1) = 0}. The finite element method consists of choosing V to be some set of piecewise polynomial
functions. In this lab, we will consider the case of using piecewise linear functions.

The Finite Element Method
Let Pn be some partition of [0, 1], 0 = x0 < x1 < . . . < xn = 1, and let Vn be the set of continuous
linear piecewise functions v on [0, 1] such that v is linear on each subinterval [xj , xj+1]. These
subintervals are the finite elements for which this method is named. Note that Vn has dimension
n+ 1, since each of the continuous piecewise linear functions in V are uniquely determined by their
values at the n + 1 points x0, x1 . . . , xn. Let Vn,0 be the subspace of Vn of dimension n − 1 whose
elements are zero at the endpoints of [0, 1].

Let the ϕi be the hat functions

ϕi(x) =


(x− xi−1)/hi if x ∈ [xi−1, xi]

(xi+1 − x)/hi+1 if x ∈ [xi, xi+1]

0 otherwise

where hi = xi − xi−1; see Figures 12.2 and 12.3. These hat functions form a basis for Vn. Note that
the points x0, . . . , xn need not be evenly spaced, and the hi do not need to be equal. This is in fact
one of the major strengths of this approach, as it allows adapting the points in the partition to the
problem, which can reduce the error in the approximation. When applied to PDEs, it also is a simple
way to handle unusually-shaped domains.

We now can write our approximate solution for y and the arbitrary function w as a linear com-
bination of these basis elements, which will enable us to solve the system numerically. In particular,
we can write ŷ(x) =

∑n
i=0 kiϕi(x), where the ki are to be determined.

To make things more concrete, consider the case of n = 5 with the partition P5 = {x0, x1, . . . , x5}.
We look for an approximation ŷ =

∑5
i=0 kiϕi ∈ V5 of the true solution y; to do this, we must deter-

mine appropriate values for the constants ki. We impose the condition on ŷ that

a(ŷ, w) = l(w)

for all w ∈ V5,0. This can be written equivalently as

a

(
5∑

i=0

kiϕi, ϕj

)
= l(ϕj) for j = 1, 2, 3, 4,

since a and l are linear in w and ϕ1, ϕ2, ϕ3, ϕ4 form a basis for V5,0. Since a is also linear in y, we
further obtain

5∑
i=0

kia(ϕi, ϕj) = l(ϕj) for j = 1, 2, 3, 4.

To satisfy the boundary conditions, we necessarily have that k0 = α, k5 = β. These equations can
be written together in matrix form as

AK = Φ, (12.4)

106 Lab 12. The Finite Element method

x2 x3 x4

0.0

0.2

0.4

0.6

0.8

1.0 3

Figure 12.2: The basis function ϕ3, when the xi are evenly spaced.

where

A =



1 0 0 0 0 0

a(ϕ0, ϕ1) a(ϕ1, ϕ1) a(ϕ2, ϕ1) 0 0 0

0 a(ϕ1, ϕ2) a(ϕ2, ϕ2) a(ϕ3, ϕ2) 0 0

0 0 a(ϕ2, ϕ3) a(ϕ3, ϕ3) a(ϕ4, ϕ3) 0

0 0 0 a(ϕ3, ϕ4) a(ϕ4, ϕ4) a(ϕ5, ϕ4)

0 0 0 0 0 1



and

K =



k0
k1
k2
k3
k4
k5

 , Φ =



α

l(ϕ1)

l(ϕ2)

l(ϕ3)

l(ϕ4)

β

 .

107

x0 x1 x2 x3 x4 x5

0.0

0.2

0.4

0.6

0.8

1.0 0 1 2 3 4 5

Figure 12.3: The six basis functions for V5, when the xi are evenly spaced.

Note that since a(ϕi, ϕj) = 0 for most values of i, j (in particular, when the hat functions do not
have overlapping domains), the finite element method results in a sparse linear system. To compute
the coefficients of (12.4) we begin by evaluating some integrals. Since

ϕi(x) =


(x− xi−1)/hi if x ∈ [xi−1, xi]

(xi+1 − x)/hi+1 if x ∈ [xi, xi+1]

0 otherwise

ϕ′i(x) =


1/hi for xi−1 < x < xi,

−1/hi+1 for xi < x < xi+1,

0 otherwise,

108 Lab 12. The Finite Element method

we obtain

∫ 1

0

ϕ′iϕ
′
j =


−1/hi+1 if j = i+ 1,

1/hi + 1/hi+1 if j = i,

0 otherwise,

∫ 1

0

ϕ′iϕj =


−1/2 if j = i+ 1,

1/2 if j = i− 1,

0 otherwise,

which can be put together to obtain (for f(x) = 1)

a(ϕi, ϕj) =


ε/hi+1 + 1/2 if j = i+ 1,

−ε/hi − ε/hi+1 if j = i,

ε/hi − 1/2 if j = i− 1,

0 otherwise,

l(ϕj) = −
1

2
(hj + hj+1).

Equation (12.4) may now be solved using any standard linear solver. To handle the large number of
elements required for Problem 3, you will want to use sparse matrices from scipy.sparse.

Problem 1. Use the finite element method to solve

εy′′ − y′ = −1,
y(0) = α, y(1) = β,

(12.5)

where α = 2, β = 4, and ε = 0.02. Use N = 100 finite elements (101 grid points). Compare
your solution with the analytic solution

y(x) = α+ x+ (β − α− 1)
ex/ε − 1

e1/ε − 1
.

Hint: One additional nice consequence of this setup is that the approximation ŷ is exactly
the piecewise linear function that connects the points (xi, ki). This means that the solution can
be plotted very simply using plt.plot(x, k), where x and k are arrays of the xi and ki.

Problem 2. One of the strengths of the finite element method is the ability to generate grids
that better suit the problem. The solution of (12.5) changes most rapidly near x = 1. Compare
the numerical solution when the grid points are unevenly spaced versus when the grid points
are clustered in the area of greatest change; see Figure 12.4. Specifically, use the grid points
defined by

even_grid = np.linspace(0,1,15)
clustered_grid = np.linspace(0,1,15)**(1./8)

109

0.0 0.2 0.4 0.6 0.8 1.0

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00 Analytic solution
Evenly spaced grid points
Clustered grid points

Figure 12.4: Two finite element approximations using 15 grid points, with different spacings.

Problem 3. Higher order methods promise faster convergence, but typically require more work
to code. So why do we use them when a low order method will converge just as well, albeit
with more grid points? The answer concerns the roundoff error associated with floating point
arithmetic. Low order methods generally require more floating point operations, so roundoff
error has a much greater effect.

The finite element method introduced here is a second order method, even though the
approximate solution is piecewise linear. (To see this, note that if the grid points are evenly
spaced, the matrix A in (12.4) is exactly the same as the matrix for the second order centered
finite difference method.)

Solve (12.5) with the finite element method using N = 2i evenly-spaced finite elements,
i = 4, 5, . . . , 21. Remember to use sparse matrices, as this greatly reduces the memory and
computation needed for the larger N . Compute the error as the maximum absolute value of
the difference of the values of the approximate and true solutions at each of the xi. Use a
log-log plot to graph the error, and compare with Figure 12.5.

110 Lab 12. The Finite Element method

101 102 103 104 105 106

N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

Figure 12.5: Error for the second order finite element method, as the number of subintervals N grows.
Round-off error eventually overwhelms the approximation.

	to 20ptILabs
	The Finite Element method

