
10 Conservation Laws
and Heat Flow

Many physical phenomena have a conservation law associated with them. For instance, matter,
energy, and momentum are all conserved quantities. The fundamental conservation law states that
the rate of change of the total quantity in the system is equal to the rate that the quantity enters
the system plus the rate at which the quantity is produced by sources inside the system. While this
is a global property, we can use it to obtain a local differential equation that the concentration of the
quantity must obey everywhere in the system. Because of this, conservation laws are very important
in modeling a wide variety of phenomena.

Derivation of the Conservation equation in multiple dimensions
Suppose Ω is a region in Rn, and V ⊂ Ω is bounded with a reasonably well-behaved boundary ∂V .
Let u(x⃗, t) represent the density (concentration) of some quantity throughout Ω. Let n⃗(x) represent
the normal direction to V at x ∈ ∂V , and let J⃗(x⃗, t) be the flux vector for the quantity, so that
J⃗(x⃗, t) · n⃗(x) dA represents the rate at which the quantity leaves V by crossing a boundary element
with area dA. Note that the total amount of the quantity in V is∫

V

u(x⃗, t) dt,

and the rate at which the quantity enters V is

−
∫
∂V

J⃗(x⃗, t) · n⃗(x) dA.

We let the source term be given by g(x⃗, t, u); we may interpret this to mean that the rate at
which the quantity is produced in V is ∫

V

g(x⃗, t, u) dt.

Then the integral form of the conservation law for u is expressed as

d

dt

∫
V

u(x⃗, t) dx⃗ = −
∫
∂V

J⃗ · n⃗ dA+

∫
V

g(x⃗, t, u) dx⃗.

If u and J are sufficiently smooth functions, then we have

d

dt

∫
V

u dx⃗ =

∫
V

ut dx⃗,

87

88 Lab 10. Heat Flow

and ∫
∂V

J⃗ · n⃗ dA =

∫
V

∇ · J⃗ dx⃗.

Putting these together yields∫
V

u(x⃗, t) dx⃗ =

∫
V

(
−∇ · J⃗ + g(x⃗, t, u)

)
dx⃗

Since this holds for all nice subsets V ⊂ Ω with V arbitrarily small, the integrands must be equal
everywhere, and we obtain the differential form of the conservation law for u:

ut +∇ · J⃗ = g(x⃗, t, u),

where ∇ is the gradient operator and ∇ · J⃗ = ∂J1

∂x1
+ · · ·+ ∂Jn

∂xn

Constitutive Relations
So far, our conservation law consists of 2 unknowns (u and J) but only 1 equation. To this equation
we need to add other equations, called constitutive relations, which are used to fully determine the
system.

For example, suppose we wish to model the flow of heat. Since heat flows from warmer regions
to colder regions, and the rate of heat flow depends on the difference in temperature between regions,
we usually assume that the flux vector J⃗ is given by

J⃗(x, t) = −ν∇u(x, t),

where ν is called the diffusion constant and ∇u(x, t) = [∂x1
u, . . . , ∂xn

u]
T . This constitutive relation is

called Fick’s law, and is the basic model for any diffusive process. Substituting into the conservation
law we obtain

ut − ν∆u(x, t) = g(x⃗, t, u)

where ∆ is the Laplacian operator:

∆u(x, t) =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
.

The function g represents heat sources and sinks within the region.

Numerically modeling heat flow
Consider the heat flow equation in one dimension together with an appropriate initial condition
u(x, 0) = f(x), homogeneous Dirichlet boundary conditions, and g(x, t, u) = 0:

ut = νuxx, x ∈ [a, b], t ∈ [0, T],

u(a, t) = 0, u(b, t) = 0,

u(x, 0) = f(x).

We will create an approximation U j
i to u(xi, tj) on the grid xi = a+ hi, tj = kj, where h and k are

small changes in x and t respectively and i and j are indices; so, U j
i denotes the approximate value

of u at the i-th grid point and the j-th time step.

89

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 10.1: The graph of U0, the approximation to the solution u(x, t = 0) for Problem 1.

As before, we will use the finite difference method to create this approximation. Recall that by
using Taylor’s theorem, we have the first-order forward difference approximation

ut(x, t) =
u(x, t+ k)− u(x, t)

k
+O(k).

and the second-order centered difference approximation

uxx(xi, tj) =
u(xi + h, tj)− 2u(xi, tj)− u(xi − h, tj)

h2
+O(h2).

Applying these difference approximations give us the O(h2 + k) explicit method

U j+1
i − U j

i

k
= ν

U j
i+1 − 2U j

i + U j
i−1

h2
,

U j+1
i = U j

i +
νk

h2
(U j

i+1 − 2U j
i + U j

i−1).

(10.1)

This method can be written in matrix form as

U j+1 = AU j ,

90 Lab 10. Heat Flow

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 10.2: The graph of U4, the approximation to the solution u(x, t = 0.4) for Problem 1.

where A is the tridiagonal matrix given by

A =


1 0

λ 1− 2λ λ
.

λ 1− 2λ λ

0 1

 ,

λ = νk/h2, and U j represents the approximation at time tj . We can initialize this method using the
initial condition given in our problem, which tells us that U0

i = f(xi).

Note

91

Note that the matrix representing the finite difference scheme is very sparse, which is typical
of finite difference schemes. While represeting finite difference schemes with matrices can be
an effective method, especially for implicit schemes, it is very important that a sparse matrix
format is used. Otherwise, performance will be dramaticaly negatively impacted. In Python,
since looping is slow, the best alternative is to vectorize the difference scheme. This approach
can in fact be even better than using matrices for explicit schemes, such as the one we are using
here, as it avoids needing to store the matrix in memory.

To account for our constant boundary conditions using this differencing scheme, simply set the
boundary points to the appropriate values in the initial conditions, then avoid modifying them as
you update for each time step. Note that the first and last rows of the matrix representation of the
differencing scheme are the same as the first and last rows of the identity matrix. This has the effect
of keeping the boundary points the same as in the previous step, and thus the same as in the initial
condition.

Problem 1. Consider the initial/boundary value problem

ut = 0.05uxx, x ∈ [0, 1], t ∈ [0, 1]

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = 2max{0.2− |x− 0.5|, 0}.
(10.2)

Approximate the solution u(x, t) by taking 6 subintervals in the x dimension and 10 subintervals
in time. Plot the solution at the times t = 0, t = 0.4, and t = 1. The graphs for U0 and U4 are
given in Figures 10.1 and 10.2.

Problem 2. Solve the initial/boundary value problem

ut = uxx, x ∈ [−12, 12], t ∈ [0, 1],

u(−12, t) = 0, u(12, t) = 0,

u(x, 0) = max{1− x2, 0}
(10.3)

using the first order explicit method 10.1. Use 140 subintervals in the x dimension and 70
subintervals in time. The initial and final states are shown in Figure 10.3. Animate your
results.

Explicit methods usually have a stability condition, called a CFL condition (for Courant-
Friedrichs-Lewy). For method 10.1 the CFL condition that must be satisfied is that

λ =
νk

h2
≤ 1

2
.

Repeat your computations using 140 subintervals in the x dimension and 66 subintervals in
time. Animate the results. For these values, the CFL condition is broken; you should be able
to clearly see the result of this instability in the approximation U66.

92 Lab 10. Heat Flow

10 5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0
Initial State
State at time t=1.

Figure 10.3: The initial and final states for equation Problem 2.

Implicit methods often have better stability properties than explicit methods. The Crank-
Nicolson method, for example, is unconditionally stable and has order O(h2 + k2). To derive the
Crank-Nicolson method, we use the following approximations:

ut(xi, tj+1/2) =
u(xi, tj+1)− u(xi, tj)

k
+O(k2),

uxx(xi, tj+1/2) =
uxx(xi, tj+1) + uxx(xi, tj)

2
+O(k2).

The first equation is a finite difference approximation for ut, and the second is a midpoint approxi-
mation applied to uxx. These approximations give the relation

U j+1
i − U j

i

k
=

1

2

(
U j
i+1 − 2U j

i + U j
i−1

h2
+
U j+1
i+1 − 2U j+1

i + U j+1
i−1

h2

)
,

U j+1
i = U j

i +
k

2h2

(
U j
i+1 − 2U j

i + U j
i−1 + U j+1

i+1 − 2U j+1
i + U j+1

i−1

)
.

(10.4)

This method can be written in matrix form as

BU j+1 = AU j ,

93

where A and B are tridiagonal matrices given by

B =


1 0

−λ 1 + 2λ −λ
.

−λ 1 + 2λ −λ
0 1

 ,

A =


1 0

λ 1− 2λ λ
.

λ 1− 2λ λ

0 1

 ,

where λ = νk/(2h2), and U j represents the approximation at time tj . Note that here we have defined
λ differently than we did before!

How do we know if a numerical approximation is reasonable? One way to determine this is to
compute solutions for various step sizes h and see if the solutions are converging to something, which
we hope to be the true solution. To be more specific, suppose our finite difference method is O(hp)
accurate. This means that the error E(h) ≈ Chp for some constant C as h → 0 (that is, for h > 0

small enough).
So, we will compute the approximation yk for each stepsize hk, h1 > h2 > . . . > hm. We will

think of ym as the true solution. Then the error of the approximation for stepsize hk, k < m, is

E(hk) = max(|yk − ym|) ≈ Chpk,
log(E(hk)) = log(C) + p log(hk).

Thus on a log-log plot of E(h) vs. h, these values should be on a straight line with slope p when h

is small enough to start getting convergence.

Problem 3. Using the Crank Nicolson method, numerically approximate the solution u(x, t)

of the problem

ut = uxx, x ∈ [−12, 12], t ∈ [0, 1],

u(−12, t) = 0, u(12, t) = 0,

u(x, 0) = max{1− x2, 0}.
(10.5)

Note that this is an implicit linear scheme; hence, the most efficient way to find U j+1 is to
create the matrix B as a sparse matrix and use scipy.sparse.linalg.spsolve.

Demonstrate that the numerical approximation at t = 1 converges. Do this by computing
U at t = 1 using 20, 40, 80, 160, 320, and 640 steps. Use the same number of steps in both time
and space. Reproduce the loglog plot shown in Figure 10.4. The slope of the line there shows
the order of convergence.

To measure the error, use the solution with the smallest h (largest number of intervals) as
if it were the exact solution, then sample each solution only at the x-values that are represented
in the solution with the largest h (smallest number of intervals). Use the∞-norm on the arrays
of values at those points to measure the error.

94 Lab 10. Heat Flow

10-2 10-1 100 101

h

10-4

10-3

10-2

10-1

100

101

Error E(h)

h2

Figure 10.4: E(h) represents the (approximate) maximum error in the numerical solution U to
Problem 3 at time t = 1, using a stepsize of h.

Notice that, since the Crank-Nicolson method is unconditionally stable, there is no CFL
condition, and we can safely use the same number of intervals in time and space.

	to 20ptILabs
	Heat Flow

