
7 Bifurcations and
Hysteresis

Recall that any ordinary differential equation can be written as a first order system of ODEs,

x′ = F (x), x′ :=
d

dt
x(t). (7.1)

Many interesting applications and physical phenomena can be modeled using ODEs. Given a mathe-
matical model of the form (7.1), it is important to understand geometrically how its solutions behave.
This information can then be conveyed in a phase portrait, a graph describing solutions of (7.1) with
differential initial conditions. The first step in constructing a phase portrait is to find the equilibrium
solutions of the equation, i.e., the zeros of F (x), and to determine their stability.

It is often the case that the mathematical model we study depends on some parameter or set
of parameters λ. Thus the ODE becomes

x′ = F (x, λ). (7.2)

The parameter λ can then be tuned to better fit the physical application. As λ varies, the equilibrium
solutions and other geometric features of (7.2) may suddenly change. A value of λ where the phase
portrait changes is called a bifurcation point ; the study of how these changes occur is called bifurcation
theory. The parameter values and corresponding equilibrium solutions are often graphed together in
a bifurcation diagram.

As an example, consider the scalar differential equation

x′ = x2 + λ. (7.3)

For λ > 0 equation (7.3) has no equilibrium solutions. At λ = 0 the equilibrium point x = 0 appears,
and for λ < 0 it splits into two equilibrium points. For this system, a bifurcation occurs at λ = 0.
This is an example of a saddle-node bifurcation. The bifurcation diagram is shown in Figure 7.1
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Figure 7.1: Bifurcation diagram for the equation x′ = λ+ x2.

Suppose that F (x0, λ0) = 0. We use a method called natural embedding to find zeros (x, λ)

of F for nearby values of λ. Specifically, we step forward in λ by letting λ1 = λ0 + △λ, and use
Newton’s method to find the value x1 that satisfies F (x1, λ1) = 0. This method works well except
when λ is near a bifurcation point λ∗.

The following code implements the natural embedding algorithm, and then uses that algorithm
to find the curves in the bifurcation diagram for (7.3). Notice that this algorithm needs a good initial
guess for x0 to get started.
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Figure 7.2: Phase Portrait for the equation x′ = −2 + x2.

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import newton

def EmbeddingAlg(param_list, guess, F):
X = []
for param in param_list:

try:
# Solve for x_value making F(x_value, param) = 0.
x_value = newton(F, guess, fprime=None, args=(param,), tol=1E-7, ←↩

maxiter=50)
# Record the solution and update guess for the next iteration.
X.append(x_value)
guess = x_value

except RuntimeError:
# If Newton's method fails, return a truncated list of parameters
# with the corresponding x values.
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return param_list[:len(X)], X
# Return the list of parameters and the corresponding x values.
return param_list, X

def F(x, lmbda):
return x**2 + lmbda

# Top curve shown in the bifurcation diagram
C1, X1 = EmbeddingAlg(np.linspace(-5, 0, 200), np.sqrt(5), F)
# The bottom curve
C2, X2 = EmbeddingAlg(np.linspace(-5, 0, 200), -np.sqrt(5), F)

Problem 1. Use the natural embedding algorithm to create a bifurcation diagram for the
differential equation

x′ = λx− x3.

This type of bifurcation is called a pitchfork bifurcation (you should see a pitchfork in your
diagram).

Hints: Essentially this amounts to running the same code as the example, but with dif-
ferent parameters and function calls so that you are tracing through the right curves for this
problem. To make this first problem work, you will want to have your ‘linspace’ run from
high to low instead of from low to high. There will be three different lines in this image all of
which must be produced using the EmbeddingAlg function. Any hard coding will result in an
automatic 0. See Figure 7.3.

Problem 2. Create bifurcation diagrams for the differential equation

x′ = η + λx− x3,

where η = −1,−.2, .2 and 1. Notice that when η = 0 you can see the pitchfork bifurcation of
the previous problem. There should be four different images, one for each value of η. Each
image will be built of 3 pieces. See Figure 7.4.

Hysteresis
The following ODE exhibits an interesting bifurcation phenomenon called hysteresis:

x′ = λ+ x− x3.

This system has a bifurcation diagram containing what is known as a hysteresis loop, shown in Figure
7.5. In the hysteresis loop, when the parameter λ moves beyond the bifurcation point the equilibrium
solution makes a sudden jump to the other stable branch. When this occurs the system cannot reach
its previous equilibrium by simply rewinding the parameter slightly. The next section discusses a
model with a hysteresis loop.
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Figure 7.3: Bifurcation diagram for the equation x′ = λx− x3.
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Figure 7.4: Bifurcation diagram for the equation x′ = η + λx− x3 with η = −1.
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Figure 7.5: Bifurcation diagram for the ODE x′ = λ+ x− x3.

Budworm Population Dynamics

Here we study a mathematical model describing the population dynamics of an insect called the
spruce budworm. In eastern Canada, an outbreak in the budworm population can destroy most of
the trees in a forest of balsam fir trees in about 4 years. The mathematical model is given by

N ′ = RN

(
1− N

K

)
− p(N). (7.4)

This model was studied by Ludwig et al (1978), and is described well in Strogatz’s text Nonlinear
Dynamics and Chaos. Here N(t) represents the budworm population at time t, R is the growth
rate of the budworm population and K represents the carrying capacity of the environment. We
could interpret K to represent the amount of food available to the budworms. p(N) represents the
death rate of budworms due to predators (birds); we assume specifically that p(N) has the form
P (N) = BN2

A2+N2 .
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Figure 7.6: Graphical demonstration of nonzero equilibrium solutions for the budworm population
(here r = .56, k = 8); equilibrium solutions occur where the curves cross. As k increases, the line
y = r(1− x/k) gets more shallow and the number of solutions goes from one to three and then back
to one.

Before studying the equilibrium points of (7.4) it is important to reduce the number of pa-
rameters in the system by nondimensionalizing. Thus, we make the coordinate change x = N/A,
τ = Bt/A, r = RA/B, and k = K/A, obtaining finally the system

dx

dτ
= rx(1− x/k)− x2

1 + x2
. (7.5)

Note that x = 0 is always an equilibrium solution. To find other equilibrium solutions we study
the equation r(1−x/k)−x/(1+x2) = 0. Fix r = .56, and consider Figure (7.6) (k = 8 in the figure).
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Figure 7.7: Bifurcation diagram for the budworm population model. The parameter r is fixed at 0.56.
The lower stable branch is known as the refuge level of the bundworm population, while the upper
stable branch is known as the outbreak level. Once the budworm population reaches an outbreak
level, the available food (foliage of the balsam fir trees) in the system must be reduced drastically
to jump back down to refuge level. Thus many of the balsam fir trees die before the budworm
population returns to refuge level.

Problem 3 (Budworm Population). Reproduce the bifurcation diagram (7.5) for the dif-
ferential equation

dx

dτ
= rx(1− x/k)− x2

1 + x2
,

where r = 0.56.
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Hint: Find a value for k that you know is in the middle of the plot (i.e. where there are
three possible solutions), then use the code from the previous problems to expand along each
contour till you obtain the desired curve. Now find the proper initial guesses that give you the
right bifurcation curve. The final plot will look like the one in Figure 7.7, but you will have to
run the embedding algorithm 4-6 times to get every part of the plot. In order to make a black
dashed line, add ’–k’ as the third argument in plt.plot() and use ’-k’ as the third argument in
plt.plot() to get the solid black line.
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