The Finite Difference Method

Lab Objective: The finite difference method provides a solid foundation for solving partial differential equations. Understanding and applying finite difference is key to understanding numerical solutions to PDEs.

A finite difference for a function $f(x)$ is an expression of the form $f(x+s)-f(x+t)$. Finite differences can give a good approximation of derivatives.

Suppose we have a function $u(x)$, defined on an interval $[a, b]$. Let $a=x_{0}, x_{1}, \ldots x_{n-1}, x_{n}=b$ be a grid of $n+1$ evenly spaced points, with $x_{i+1}-x_{i}=h$, where $h=(b-a) / n$.

You are used to seeing the derivative $u^{\prime}(x)$, which can written in centered-difference form as:

$$
u^{\prime}(x)=\lim _{h \rightarrow \infty} \frac{u(x+h)-u(x-h)}{2 h} .
$$

Suppose we are interested in knowing the value of the derivative at the points $\left\{x_{i}\right\}$. Even if we don't have a formula for $u^{\prime}(x)$, we can approximate it using finite differences. We first write the Taylor polynomial expansion of $u(x+h)$ and $u(x-h)$ centered at x. This gives

$$
\begin{align*}
& u(x+h)=u(x)+u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}+\frac{1}{6} u^{\prime \prime \prime}(x) h^{3}+\mathcal{O}\left(h^{4}\right) \tag{8.1}\\
& u(x-h)=u(x)-u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}-\frac{1}{6} u^{\prime \prime \prime}(x) h^{3}+\mathcal{O}\left(h^{4}\right) \tag{8.2}
\end{align*}
$$

Subtracting (8.2) from (8.1) and rearranging gives

$$
u^{\prime}(x)=\frac{u(x+h)-u(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right)
$$

In terms of our grid points $\left\{x_{i}\right\}$, we have:

$$
u^{\prime}\left(x_{i}\right) \approx \frac{u\left(x_{i}+h\right)-u\left(x_{i}-h\right)}{2 h}=\frac{u\left(x_{i+1}\right)-u\left(x_{i-1}\right)}{2 h}
$$

We won't worry about the derivative at the endpoints, $u^{\prime}\left(x_{0}\right)$ and $u^{\prime}\left(x_{n}\right)$. This allows us to approximate the values $\left\{u^{\prime}\left(x_{i}\right)\right\}$ as the solution to a system of equations:

$$
\frac{1}{2 h}\left[\begin{array}{ccccccc}
-1 & 0 & 1 & & & & \tag{8.3}\\
& -1 & 0 & 1 & & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 0 & 1 & \\
& & & & -1 & 0 & 1
\end{array}\right] \cdot \underset{(n-1) \times(n+1)}{\left[\begin{array}{c}
u\left(x_{0}\right) \\
u\left(x_{1}\right) \\
\vdots \\
u\left(x_{n-1}\right) \\
u\left(x_{n}\right)
\end{array}\right]} \underset{(n+1) \times 1}{\left[\begin{array}{c}
(n-1) \times 1
\end{array}\right.} \underset{\substack{u^{\prime}\left(x_{1}\right) \\
u^{\prime}\left(x_{2}\right) \\
\vdots \\
u^{\prime}\left(x_{n-2}\right) \\
u^{\prime}\left(x_{n-1} \\
(n-1)\right.}}{[.}
$$

This can be rewritten with a $(n-1) \times(n-1)$ tridiagonal matrix instead:

$$
\frac{1}{2 h}\left[\begin{array}{ccccc}
0 & 1 & & & \tag{8.4}\\
-1 & 0 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 0 & 1 \\
& & & -1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
u\left(x_{1}\right) \\
u\left(x_{2}\right) \\
\vdots \\
u\left(x_{n-2}\right) \\
u\left(x_{n-1}\right)
\end{array}\right]+\left[\begin{array}{c}
-u\left(x_{0}\right) /(2 h) \\
0 \\
\vdots \\
0 \\
u\left(x_{n}\right) /(2 h)
\end{array}\right] \approx\left[\begin{array}{c}
u^{\prime}\left(x_{1}\right) \\
u^{\prime}\left(x_{2}\right) \\
\vdots \\
u^{\prime}\left(x_{n-2}\right) \\
u^{\prime}\left(x_{n-1}\right)
\end{array}\right] .
$$

Next, we will consider the approximation for $u^{\prime \prime}(x)$. If we let

$$
u^{\prime}(x) \approx \frac{u\left(x+\frac{h}{2}\right)-u\left(x-\frac{h}{2}\right)}{h}
$$

then

$$
\begin{gathered}
u^{\prime \prime}(x) \approx \frac{u^{\prime}\left(x+\frac{h}{2}\right)-u^{\prime}\left(x-\frac{h}{2}\right)}{h} \approx \frac{\frac{u\left(\left(x+\frac{h}{2}\right)+\frac{h}{2}\right)-u\left(\left(x+\frac{h}{2}\right)-\frac{h}{2}\right)}{h}-\frac{u\left(\left(x-\frac{h}{2}\right)+\frac{h}{2}\right)-u\left(\left(x-\frac{h}{2}\right)-\frac{h}{2}\right)}{h}}{h} \\
=\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}
\end{gathered}
$$

You can achieve the same result by again consider the Taylor polynomial expansion and adding (8.1) and (8.2) and rearranging. Thus

$$
u^{\prime \prime}\left(x_{i}\right) \approx \frac{u\left(x_{i}+h\right)-2 u\left(x_{i}\right)+u\left(x_{i}-h\right)}{h^{2}}=\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}}
$$

Again ignoring the second derivative at the endpoints, this can be written in matrix form as

This can also be written with a $(n-1) \times(n-1)$ tridiagonal matrix:

$$
\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 & 1 & & & \tag{8.6}\\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & & 1 & -2
\end{array}\right] \quad \underset{(n-1) \times(n-1)}{\left[\begin{array}{c}
u\left(x_{1}\right) \\
u\left(x_{2}\right) \\
\vdots \\
u\left(x_{n-2}\right) \\
u\left(x_{n-1}\right)
\end{array}\right]}+\underset{(n-1) \times 1}{\left[\begin{array}{c}
{\left[\begin{array}{c}
n-1) \times 1
\end{array}\right.} \\
{\left[\begin{array}{c}
u\left(x_{0}\right) / h^{2} \\
0 \\
\vdots \\
0 \\
u\left(x_{n}\right) / h^{2}
\end{array}\right]} \\
{\left[\begin{array}{c}
(n-1) \times 1
\end{array}\right.} \\
{\left[\begin{array}{c}
u^{\prime \prime}\left(x_{1}\right) \\
u^{\prime \prime}\left(x_{2}\right) \\
\vdots \\
u^{\prime \prime}\left(x_{n-2}\right) \\
u^{\prime \prime}\left(x_{n-1}\right)
\end{array}\right]}
\end{array}\right]}
$$

Problem 1. Let $u(x)=\sin \left((x+\pi)^{2}-1\right)$. Use (8.3) - (8.6) to approximate $\frac{1}{2} u^{\prime \prime}-u^{\prime}$ at the grid points where $a=0, b=1$, and $n=10$. Graph the result.

The previous equations are not only useful for approximating derivatives, but they can be also used to solve differential equations. Suppose that instead of knowing the function $u(x)$, we know that $\frac{1}{2} u^{\prime \prime}-u^{\prime}=f$, where the function $f(x)$ is given. How do we solve for $u(x)$?

Finite Difference Methods

Numerical methods for differential equations seek to approximate the exact solution $u(x)$ at some finite collection of points in the domain of the problem. Instead of analytically solving the original differential equation, defined over an infinite-dimensional function space, they use a well-chosen finite system of algebraic equations to approximate the original problem.

Consider the following differential equation:

$$
\begin{align*}
& \varepsilon u^{\prime \prime}(x)-u(x)^{\prime}=f(x), \quad x \in(0,1) \tag{8.7}\\
& u(0)=\alpha, \quad u(1)=\beta
\end{align*}
$$

Equation (8.7) can be written $D u=f$, where $D=\varepsilon \frac{d^{2}}{d x^{2}}-\frac{d}{d x}$ is a differential operator defined on the infinite-dimensional space of functions that are twice continuously differentiable on $[0,1]$ and satisfy $u(0)=\alpha, u(1)=\beta$.

We look for an approximate solution $\left\{U_{i}\right\}$, where

$$
U_{i} \approx u\left(x_{i}\right)
$$

on an evenly spaced grid of points, $a=x_{0}, x_{1}, \ldots, x_{n}=b$. . Our finite difference method will replace the differential operator $D=\varepsilon \frac{d^{2}}{d x^{2}}-\frac{d}{d x}$, (which is defined on an infinite-dimensional space), with finite difference operators (defined on a finite dimensional space). To do this, we replace derivative terms in the differential equation with appropriate difference expressions.

Recalling that

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} u\left(x_{i}\right) & =\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}}+\mathcal{O}\left(h^{2}\right) \\
\frac{d}{d x} u\left(x_{i}\right) & =\frac{u\left(x_{i+1}\right)-u\left(x_{i-1}\right)}{2 h}+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

we define the finite difference operator D_{h} by

$$
\begin{equation*}
D_{h} U_{i}=\varepsilon \frac{1}{h^{2}}\left(U_{i+1}-2 U_{i}+U_{i-1}\right)-\frac{1}{2 h}\left(U_{i+1}-U_{i-1}\right) \tag{8.8}
\end{equation*}
$$

Thus we discretize equation (8.7) using the equations

$$
\frac{\varepsilon}{h^{2}}\left(U_{i+1}-2 U_{i}+U_{i-1}\right)-\frac{1}{2 h}\left(U_{i+1}-U_{i-1}\right)=f\left(x_{i}\right), \quad i=1, \ldots, n-1
$$

along with boundary conditions $U_{0}=\alpha, U_{n}=\beta$.

This gives $n+1$ equations and $n+1$ unknowns, and can be written in matrix form as

$$
\frac{1}{h^{2}}\left[\begin{array}{ccccc}
h^{2} & 0 & 0 & \cdots & 0 \\
(\varepsilon+h / 2) & -2 \varepsilon & (\varepsilon-h / 2) & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & (\varepsilon+h / 2) & -2 \varepsilon & (\varepsilon-h / 2) \\
0 & \cdots & & 0 & h^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
U_{0} \\
U_{1} \\
\vdots \\
U_{n-1} \\
U_{n}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n-1}\right) \\
\beta
\end{array}\right] .
$$

As before, we can remove two equations to modify the system to obtain an $(n-1) \times(n-1)$ tridiagonal system:

$$
\begin{gather*}
\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 \varepsilon & (\varepsilon-h / 2) & 0 & \cdots & 0 \\
(\varepsilon+h / 2) & -2 \varepsilon & (\varepsilon-h / 2) & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & (\varepsilon+h / 2) & -2 \varepsilon & (\varepsilon-h / 2) \\
0 & \cdots & & (\varepsilon+h / 2) & -2 \varepsilon
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{n-2} \\
U_{n-1}
\end{array}\right] \\
\\ \tag{8.9}
\end{gather*}
$$

Problem 2. Use equation (8.9) to solve the singularly perturbed BVP (8.7) on the interval $[0,1]$ with $\varepsilon=1 / 10, f(x)=\overline{-1}, \alpha=1$, and $\beta=3$ on a grid with $n=30$ subintervals. Graph the solution. This BVP is called singularly perturbed because of the location of the parameter ε. For $\varepsilon=0$ the ODE has a drastically different character - it then becomes first order, and can no longer support two boundary conditions.

A heuristic test for convergence

The finite differences used above are second order approximations of the first and second derivatives of a function. It seems reasonable to expect that the numerical solution would converge at a rate of about $\mathcal{O}\left(h^{2}\right)$. How can we check that a numerical approximation is reasonable?

Suppose a finite difference method is $\mathcal{O}\left(h^{p}\right)$ accurate. This means that the error $E(h) \approx C h^{p}$ for some constant C as $h \rightarrow 0$ (in other words, for $h>0$ small enough).

So compute the approximation y_{k} for each stepsize $h_{k}, h_{1}>h_{2}>\ldots>h_{m} . y_{m}$ should be the most accurate approximation, and will be thought of as the true solution. Then the error of the approximation for stepsize $h_{k}, k<m$, is

$$
\begin{aligned}
E\left(h_{k}\right) & =\max \left(\left|y_{k}-y_{m}\right|\right) \approx C h_{k}^{p} \\
\log \left(E\left(h_{k}\right)\right) & =\log (C)+p \log \left(h_{k}\right) .
\end{aligned}
$$

Figure 8.1: The solution to Problem 2. The solution gets steeper near $x=1$ as ε gets small.

Figure 8.2: Demonstration of second order convergence for the finite difference approximation (8.8) of the BVP given in (8.7) with $\varepsilon=.5$.

Thus on a $\log -\log$ plot of $E(h)$ vs. h, these values should be on a straight line with slope p when h is small enough to start getting convergence. We should note that demonstrating second-order convergence does NOT imply that the numerical approximation is converging to the correct solution.

Problem 3. Implement a function singular_bvp to compute the finite difference solution to 8.7. Using $n=5 \times 2^{0}, 5 \times 2^{1}, \ldots, 5 \times 2^{9}$ subintervals, compute 10 approximate solutions. Use these to visualize the $\mathcal{O}\left(h^{2}\right)$ convergence of the finite difference method from Problem $\underline{2}$ by producing a loglog plot of error against subinterval count; this will be similar to Figure 8.2, except with $\varepsilon=0.1$.

To produce the plot, treat the approximation with $n=5 \times 2^{9}$ subintervals as the "true solution", and measure the error for the other approximations against it. Note that, since the ratios of numbers of subintervals between approximations are multiples of 2 , we can compute the L_{∞} error for the $n=5 \times 2^{j}$ approximation by using the step argument in the array slicing syntax:

```
# best approximation; the vector has length 5*2^9+1
sol_best = singular_bvp(eps,alpha,beta,f,5*(2**9))
# approximation with 5*(2^j) intervals; the vector has length 5*2^j+1
sol_approx = singular_bvp(eps,alpha,beta,f,5*(2**j))
# approximation error; slicing results in a vector of length 5*2^j+1,
# which allows it to be compared
error = np.max(np.abs(sol_approx - sol_best[::2**(9-j)]))
```

Problem 4. Extend your finite difference code to the case of a general second order linear BVP with boundary conditions:

$$
\begin{aligned}
& a_{1}(x) y^{\prime \prime}(x)+a_{2}(x) y^{\prime}(x)+a_{3}(x) y(x)=f(x), \quad x \in(a, b), \\
& y(a)=\alpha, \quad y(b)=\beta
\end{aligned}
$$

Use your code to solve the boundary value problem

$$
\begin{array}{r}
\varepsilon y^{\prime \prime}-4\left(\pi-x^{2}\right) y=\cos x \\
y(0)=0, \quad y(\pi / 2)=1
\end{array}
$$

for $\varepsilon=0.1$ on a grid with $n=30$ subintervals. Be sure to modify the finite difference operator D_{h} in (8.8) correctly.

The next few problems will help you test your finite difference code.

Problem 5. Numerically solve the boundary value problem

$$
\begin{array}{r}
\varepsilon y^{\prime \prime}(x)+x y^{\prime}(x)=-\varepsilon \pi^{2} \cos (\pi x)-\pi x \sin (\pi x), \\
y(-1)=-2, \quad y(1)=0,
\end{array}
$$

for $\varepsilon=0.1,0.01$, and 0.001 . Use a grid with $n=150$ subintervals. Plot your solutions.

Figure 8.3: The solution to Problem 4.

Problem 6. Numerically solve the boundary value problem

$$
\begin{array}{r}
\left(\varepsilon+x^{2}\right) y^{\prime \prime}(x)+4 x y^{\prime}(x)+2 y(x)=0 \\
y(-1)=1 /(1+\varepsilon), \quad y(1)=1 /(1+\varepsilon)
\end{array}
$$

for $\varepsilon=0.05,0.02$. Use a grid with $n=150$ subintervals. Plot your solutions.

Figure 8.4: The solution to Problem 5.

Figure 8.5: The solution to Problem 6.

