
7 Naive Bayes

Lab Objective: Create a Naïve Bayes Classifier. Use this classifier, and Sklearn’s premade
classifier to make an SMS spam filter.

About Naïve Bayes
Naïve Bayes classifiers are a family of machine learning classification methods that use Bayes’ theorem
to probabilistically categorize data. They are called naïve because they assume independence between
the features. The main idea is to use Bayes’ theorem to determine the probability that a certain
data point belongs in a certain class, given the features of that data. Despite what the name may
suggest, the naïve Bayes classifier is not a Bayesian method. This is because naïve Bayes is based
on likelihood rather than Bayesian inference.

While naïve Bayes classifiers are most easily seen as applicable in cases where the features
have, ostensibly, well defined probability distributions (such as classifying sex given physical char-
acteristics), they are applicable in many other cases. While it is generally a bad idea to assume
independence naïve Bayes classifiers are still very effective, even when we can be confident there is
nonzero covariance between features.

The Classifier
You are likely already familiar with Bayes’ Theorem, but we will review how we can use Bayes’
Theorem to construct a robust machine learning model.

Given the feature vector of a piece of data we want to classify, we want to know which of all
the classes is most likely. Essentially, we want to answer the following question

argmaxk∈KP (C = k
∣∣x), (7.1)

where C is the random variable representing the class of the data. Using Bayes’ Theorem, we can
reformulate this problem into something that is actually computable. We find that for any k ∈ K

we have

P (C = k
∣∣x) = P (C = k)P (x

∣∣C = k)

P (x)
.
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Now we will examine each feature individually and use the chain rule to expand the following ex-
pression

P (C = k)P (x
∣∣C = k) = P (x1, . . . , xn, C = k)

= P (x1

∣∣x2, . . . , xn, C = k)P (x2, . . . , xn, C = k)

= . . .

= P (x1

∣∣x2, . . . , xn, C = k)P (x2

∣∣x3, . . . , xn, C = k) · · ·P (xn

∣∣C = k)P (C = k),

and applying the assumption that each feature is independent we can drastically simplify this ex-
pression to the following

P (x1

∣∣x2, . . . , xn, C = k) · · ·P (xn

∣∣C = k) =

n∏
i=1

P (xi

∣∣C = k).

Therefore we have that

P (C = k
∣∣x) = P (C = k)

P (x)

n∏
i=1

P (xi

∣∣C = k),

which reforms Equation 7.1 as

argmaxk∈KP (C = k
∣∣x) = argmaxk∈KP (C = k)

n∏
i=1

P (xi

∣∣C = k). (7.2)

We drop the P (x) in the denominator since it is not dependent on k.
This problem is approximately computable, since we can use training data to attempt to find

the parameters which describe P (xi

∣∣C = k) for each i, k combination, and P (C = k) for each k. In
reality, a naïve Bayes classifier won’t often find the actual correct parameters for each distribution,
but in practice the model does well enough to be robust. Something to note here is that we are
actually computing P (C = k

∣∣ x) by finding P (C = k,x). This means that naïve Bayes is a
generative classifier, and not a discriminative classifier.

Spam Filters

A spam filter is just a special case of a classifier with two classes: spam and not spam (or ham).
We can now describe in more detail how we are to calculate Equation 7.2 given that we know what
the features are. We can use a labeled training set to determine P (C = spam) the probability of
spam and P (C = ham) the probability of ham. To do this we will assume that the training set is a
representative sample and define

P (C = spam) =
Nspam

Nsamples
, (7.3)

and
P (C = ham) =

Nham

Nsamples
. (7.4)

Using a bag of words model, we can create a simple representation of P (xi

∣∣C = k) where xi is the
ith word in a message, and therefore x is the entire message. This results in the simple definition of

P (xi

∣∣C = k) =
Noccurrences of xi in class k

Nwords in class k
. (7.5)

Note that the denominator in Equation 7.5 is not the number of unique words in class k, but the
total number of occurrences of any word in class k. In the case we have some word xu that is not
found in the training set, we can may choose P (xu

∣∣C = k) so that the computation is not effected,
i.e. letting P (xu

∣∣C = k) = 1 for unique words.
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A First Model
When building a naïve Bayes classifier we need to choose what probability distribution we believe our
features to have. For this first model, we will assume that the words are a categorically distributed
random variable. This means the random variable may take on say N different values, each value
has a certain probability of occurring. This distribution can be thought of as a Bernoulli trial with
N outcomes instead of 2.

In our situation we may have N different words which we expect may occur in a spam or ham
message, so we need to use the training data to find each word and its associated probability. In
order to do this we will make a DataFrame that will allow us to calculate the probability of the
occurrence of a certain word xi based on what percentage of words in the training set were that word
xi. This DataFrame that will allow us to more easily compute Equation 7.5, assuming the words are
categorically distributed. While we are creating this DataFrame, it will also be a good opportunity
to compute Equations 7.3 and 7.4.

Throughout the lab we will use an SMS spam dataset contained in sms_spam_collection.csv.
The following code makes full test and train sets, but we will also provide you with code to check
against specific subsets.

>>> import pandas as pd
>>> from sklearn.model_selection import train_test_split

>>> # load in the sms dataset
>>> df = pd.read_csv('sms_spam_collection.csv')

>>> # separate the data into the messages and labels
>>> X = df.Message
>>> y = df.Label

>>> # split the data into test and train sets
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.7)

Training The Model

Problem 1. Create a class NaiveBayesFilter, with an __init__() method that is empty.
Add a fit() method which takes as arguments X, the training data, and y the training labels.
In this case X is a pandas.Series containing strings that are SMS messages. Create a new
DataFrame with two rows and a column for each vocabulary word with 'spam' and 'ham' being
the index. Each entry will be the number of times a word appears in spam or ham messages.

For example, self.data.loc['ham','in'] is the number of times the word "in" appears
in ham messages. Save this DataFrame as self.data.

Hint: be sure you count the number of occurrences of a word and not a string. For
example, when searching the string 'find it in there' for the word 'in', make sure you
get 1 and not 2 (because of the 'in' in 'find'). The methods pd.Series.str.split() and
count() may be helpful.

>>> # checkout what the DataFrame looks like
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>>> NB = NaiveBayesFilter()
>>> NB.fit(X[:300], y[:300])
>>> NB.data.loc['ham','in']
47
>>> NB.data.loc['spam','in']
4

Predictions

Now that we have implemented the fit() method, we can begin to classify new data. We will do
this with two methods, the first will be a method that calculates P (S

∣∣ x) and P (H
∣∣ x), and the

other will determine the more likely of the two and assign a label. While it may seem like we should
have P (C = S

∣∣x) = 1− P (C = H
∣∣x), we do not. This would only be true if we assume the S and

H are independent of x. It is clear that we shouldn’t make this assumption, because we are trying
to determine the likelihood of S and H based on what x tells us. Therefore we must compute both
P (C = S

∣∣x) and P (C = H
∣∣x).

Problem 2. Implement the predict_proba() method in your naïve Bayes classifier. It should
take as an argument X, the data that needs to be classified, and it will compute the product
portion of equation 7.2.

Notice that P (xi

∣∣C) is the same for every repeated instance of word xi in message x. To
save time, we only want to calculate this probability once. To do this, find

l∏
i=1

P (xi

∣∣C)ni

for each message x in X where l is the number of unique words in the message and ni is the
number of times the ith unique word (xi) occurs.

The method should return an (N, 2) array, where N is the length of X, whose entries
are the probabilities of each message x in X belonging to each category. The first column
corresponds to P (C = H

∣∣x), and the second to P (C = S
∣∣x).

Problem 3. Implement the predict() method in your naïve Bayes classifier. This should
take as an argument X, the data that needs to be classified. Using predict_proba(), finish
implementing equation 7.2 and return an array that classifies each message x in X.

>>> # create the filter
>>> NB = NaiveBayesFilter()

>>> # fit the filter to the first 300 data points
>>> NB.fit(X[:300], y[:300])

>>> # test the predict function
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>>> NB.predict(X[530:535])
array(['ham', 'spam', 'ham', 'ham', 'ham'], dtype=object)

Underflow

There are some issues that we encounter given this implementation. Notice that in the following
example, the likelihoods for both spam and ham are 0 for each message.

>>> # find the likelihoods for messages 1085 and 2010
>>> NB.predict_proba(X[[1085,2010]])
array([[0., 0.],

[0., 0.]])

This is because the messages are long, and thus involve the product of many numbers that are
between 0 and 1. Because of this, we have encountered what is called underflow, where a number
becomes so small it is not machine representable. Therefore, we should work in logspace, as to avoid
inevitable underflow caused by long messages. If we take the log of equation 7.2 have

argmaxk∈K ln (P (C = k)) +

n∑
i=1

ln
(
P (xi

∣∣C = k)
)
, (7.6)

and this problem is still valid since logarithms are monotonically increasing. However, if any of the
P (xi

∣∣C = k) are close to 0, we risk getting an overall value of −∞. To prevent this from happening,
we can perform Laplace add-one smoothing by adding 1 to the numerator of P (xi

∣∣C = k) and 2 to
its denominator. This method is equivalent to using a Bayesian method for training. Thus, equation
7.5 becomes

P (xi

∣∣C = k) =
Noccurrences of xi in class k + 1

Nwords in class k + 2
. (7.7)

Problem 4. Implement predict_log_proba() and predict_log() using equations 7.6 and
7.7. These methods will take the same arguments and return the same object types as the
methods predict_proba() and predict(), respectively.
Notice how X[[1085,2010]] is now classifiable.

The Poisson Model
Now that we’ve examine one way to constructing a naïve Bayes classifier, let us look at one more
method. In the Poisson model we assume that each word is Poisson random variable, occurring with
potentially different frequencies among spam and ham messages. Because each of the messages is a
different length, we can reparameterize the Poisson PMF to the following

P (ni = x) =
(rn)xe−rn

x!
(7.8)

where ni is the number of times word i occurs in a message, n is the length of the message, and λ = rn

is the classical Poisson rate. In this case r represents the number of events per unit time/space/etc.
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We could easily refactor this model to use Bayesian inference to determine r, which would allow
greater control over the model. This would also create a condition where the training data doesn’t
completely determine the model’s viability. However, in this lab we will use maximum likelihood
estimation to determine r.

Training the Model

Similar to the other classifier that we made, training the model amounts to using the training data
to determine how P (xi

∣∣C = k) is computed, as well as compting P (C = k). As stated earlier, we
will attempt to find the most likely value of r for each word that appears in the training set. To do
this we will use maximum likelihood estimation. The parameter we choose is the one that maximizes
the likelihood function

r̂ = argmaxrL(r
∣∣x) = argmaxrP (x

∣∣r).
In this case, since we are using a Poisson distribution (7.8) for each word, we will solve the following
problem for both the spam class and the ham classes

ri,k = argmaxr∈[0,1]

(rNk)
nie−rNk

ni!
, (7.9)

where ri,k is the Poisson rate for the ith word in class k (either spam or ham), Nk is the total number
of words in class k, and ni is the number of times the ith word occurs in class k. We have r ∈ [0, 1]

because a word cannot occur more than once per word in the message. If we take the derivative of
the right side of equation 7.9 with respect to r, set it equal to 0, and solve for the maximizing r, we
find that ri,k = ni/Nk.

Predictions

Making predictions with this model is exactly the same as we did earlier. To clarify the calculation,
lets reformulate 7.6 to fit the Poisson case better. This gives

argmaxk∈K ln (P (C = k)) +

l∑
i=1

ln

(
(ri,kn)

nie−ri,kn

ni!

)
, (7.10)

with l being the number of unique words in the message, ni the number of times the ith word occurs
in the message, n the total number of words in the message, and ri,k the Poisson rate of the ith word
in class k. Notice, if ri,k is close to 0, we’ll risk getting a total value of −∞. We can fix this by
using the Laplace add-one smoothing method as we did before, but this time on ri,k. Thus, our new
Poisson rate for the ith word in class k becomes

ri,k =
ni + 1

Nk + 2
, (7.11)

which has a Bayesian interpretation, as it did before.

Problem 5. Create a new class called PoissonBayesFilter with an __init__() method that
may be empty. Add a fit() method which takes as arguments training data X and training
labels y.
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Implement fit() by finding the MLE found in equation 7.11 to predict r for each word
in both the spam and ham classes, thereby training the model. Store these computed rates in
dictionaries called self.spam_rates and self.ham_rates, where the key is the word and the
value is the associated r.

For example, self.ham_rates['in'] will give the computed r value for the word "in"
found in ham messages.

>>> #create a poisson bayes object to examine it
>>> PB = PoissonBayesFilter()
>>> PB.fit(X[:300], y[:300])

>>> # check spam and ham rate of 'in'
>>> PB.ham_rates['in']
0.012588512981904013
>>> PB.spam_rates['in']
0.004166666666666667

Problem 6. Implement the predict_log_proba() and predict() methods using equation
7.10. These methods will take the same arguments and return the same object types as the
methods predict_proba() and predict() in the NaiveBayesFilter class, respectively. You
may use scipy.stats.poisson.pmf if you wish.

Naive Bayes with Sklearn
Now that we’ve explored a few ways to implement our own naïve Bayes classifier, we can examine
some robust tools from the sklearn library that will accomplish all the things we’ve coded up in a
very simple manner.

The first thing we need to do is create a dictionary and transform the training data, which
is what our first fit() method did. We instantiate a CountVectorizer model from sklearn.
feature_extraction.text, and then use the fit_transform() method to create the dictionary
and transform the training data.

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> vectorizer = CountVectorizer()
>>> train_counts = vectorizer.fit_transform(X_train)

Now we can use the transformed training data to fit a MultinomialNB model from sklearn.naive_bayes
.

>>> from sklearn.naive_bayes import MultinomialNB

>>> clf = MultinomialNB()
>>> clf = clf.fit(train_counts, y_train)
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Testing data we want to classify must first be transformed by our vectorizer with the transform()
method (not the fit_transform() method). We can then classify the data using the predict()
method of the MultinomialNB model.

>>> test_counts = vectorizer.transform(X_test)
>>> labels = clf.predict(test_counts)

This naïve Bayes model uses the multinomial distribution where we have used the categorical and
poisson distributions. Multinomial is very similar to the categorical implementation, as the multi-
nomial distribution models the outcome of n categorical trials (in the same way that the binomial
distribution models n Bernoulli trials).

Problem 7. Write a function that will classify messages. It will take as arguments training
data X_train and y_train, and test data X_test. In this function use the CountVectorizer
and MultinomialNB from sklearn and return the predicted classification of the model.

The results of Problem 7 can help you test the two Bayes Filters you created in this lab. Using
the accuracy_score method of sklearn.metrics, you can compare your predicted labels with the
ones from Problem 7. You should have very high accuracy, as demonstrated below.

>>> from sklearn.metrics import accuracy_score

>>> # labels returned by Problem 7
>>> actual_labels = sklearn_method(X_train, y_train, X_test)

>>> # test against NaiveBayesFilter
>>> NB = NaiveBayesFilter()
>>> NB.fit(X_train, y_train)
>>> NB_labels = NB.predict_log(X_test)
>>> accuracy_score(actual_labels, NB_labels)
0.9769289925660087

>>> # test against PoissonBayesFilter
>>> PB = PoissonBayesFilter()
>>> PB.fit(X_train, y_train)
>>> PB_labels = PB.predict(X_test)
>>> accuracy_score(acutal_labels, PB_labels)
0.9782107152012305

References
Rish, Irina. (2001). An Empirical Study of the Naïve Bayes Classifier. IJCAI 2001 Work Empir
Methods Artif Intell. 3.

Data from: http://www.dt.fee.unicamp.br/∼tiago/smsspamcollection/
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