
6 Logistic Regression

Lab Objective: Understand the basic principles of Logistic Regression and binary classifiers.
Apply this to a dataset.

Linear regression is unsuitable for predicting probabilities, because the resulting model may
take values in any fixed interval in R, but a probability-predicting model can only take values in the
interval [0, 1]. Logistic regression is a form of regression that always takes its values in the interval
[0, 1] and as such, is a popular method for predicting probabilities and for constructing classifiers.
As in linear regression, in a classification problem we have a random variable Y , conditioned on an
input X ∈ Rd. However, in binary classification problems the random variable Y is binary, that is,
Y ∈ {0, 1}. A binary classifier is any function f taking values in {0, 1}. For example, x ∈ Rd could
be the pixel intensities of an image, and the classifier f gives 1 if the image is a picuture of a duck
and 0 otherwise. The goal of a classification problem is to choose a classifier f̂ so that (X, f̂(X)) is
a good approximation for (X,Y).

Logistic Regression
Logistic regression relies heavily on the logistic function, also known as the sigmoid function, sigm :

R→ (0, 1) given by

sigm(x) =
1

1 + e−x
. (6.1)

8 6 4 2 0 2 4 6 8
0.00

0.25

0.50

0.75

1.00

Figure 6.1: Sigmoid Function

51

52 Lab 6. Logistic Regression

This function works well for classifying objects based on probabilities, because it has some key
properties that translate well into probability theory. Of particular note, the graph can translated
by adding a constant, giving the form sigm(β1t+ β0). A larger value of β1 makes the ramp up from
0 to 1 steeper, while a smaller value of β1 makes it less steep. The trick behind logistic regression is
to find the values of βi such that the resulting sigmoid function best classifies the data.

In logistic regression models we have a random variable Y with support {0, 1}, where Y is
conditioned on another random variable X, with support in Rd. The distribution of Y , given X, is
assumed to be Bernoulli

Y
∣∣X ∼ Bernoulli(sigm(XTβ)),

so that

P (Y
∣∣X) = sigm(XTβ) =

1

1 + exp(−XTβ)
.

As in the case of linear regression, we usually add a constant feature X0 = 1 to X and a
corresponding coefficient β0 to β, so that XTβ = β0 + β1X1 + · · ·+ βdXd. Given a draw of length n

of the form D = {(x1, y1), . . . , (xn, yn)} we wish to estimate β. The maximum likelihood estimator
is a good choice. To find this estimator, first observe that the likelihood of β, given the data, is

L(β
∣∣D) =

n∏
i=1

P (Y = yi, X = xi

∣∣β)
=

n∏
i=1

P (Y = yi
∣∣X = xi,β)P (Xi).

which is equivalent to maximizing

n∏
i=1

P (Y = yi
∣∣X = xi,β) =

n∏
i=1

pyi

i (1− pi)
1−yi

where

pi = P (Y = 1
∣∣xi,β) = sigm(xT

i β) =
1

1 + exp(−xT
i β)

.

Taking the negative logarithm turns this into a convex minimization problem, and a little math shows
that

ℓ(β
∣∣D) =

n∑
i=1

(
yi log(1 + exp(−xT

i β)) + (1− yi) log(1 + exp(xT
i β))

)
. (6.2)

The convexity of this problem implies there is a unique minimizer β̂ of ℓ(β
∣∣D).

Problem 1. Create a Python classifier called LogiReg that accepts an (n×1) array y of binary
labels (0’s and 1’s) as well as an (n × d) array X of data points. Write a fit() method that
uses equation 6.2 to find and save the optimal β̂.

53

Once the maximum likelihood estimate β̂ is found, we have an estimate for the probability

P (Y = 1
∣∣x) ≈ sigm(xTβ̂).

From this, we can construct a classifier f̂ by setting f̂(x) = 1 if P (Y = 1
∣∣ x) ≥ 1

2 and f̂(x) = 0

otherwise.

Problem 2. Write a method called predict_prob() for your classifier that accepts an (n×d)

array x_test and returns P (Y = 1
∣∣x_test). Also write a method called predict() that calls

predict_prob() and returns an array of predicted labels (0’s or 1’s) for the given array x_test.

Problem 3. To test your classifier, create training arrays X and y as well as testing array
X_test. The code to generate X, y, and X_test is provided below. Both X and X_test have
100 random draws from a 2-dimensional multivariate normal distribution centered at (1, 2), and
another 100 draws from one centered at (4, 3).

Train your classifier on X and y. Then generate a list of predicted labels using your trained
classifier and X_test, and use it to plot X_test with a different color for each predicted label.
Your plot should look similar to Figure 6.2.

>>> import numpy as np

>>> data = np.column_stack((
draw from 2 2-dim. multivariate normal dists.
np.concatenate((
np.random.multivariate_normal(np.array([1,2]), np.eye(2), 100),
np.random.multivariate_normal(np.array([4,3]), np.eye(2), 100)
)),
labels corresonding to each distribution
np.concatenate((np.zeros(100), np.ones(100)))))

>>> np.random.shuffle(data)
>>> # extract X and y from the shuffled data
>>> X = data[:,:2]
>>> y = data[:,2].astype(int)

>>> X_test = np.concatenate((
draw from 2 identical 2-dim. multivariate normal dists.
np.random.multivariate_normal(np.array([1,2]), np.eye(2), 100),
np.random.multivariate_normal(np.array([4,3]), np.eye(2), 100)
))

>>> np.random.shuffle(X_test)

54 Lab 6. Logistic Regression

0 2 4 6

0

1

2

3

4

5

Original Data

0 2 4 6

0

1

2

3

4

5

6

New Data with LogiReg

Figure 6.2: In reality, these two distributions overlap a little, but the logistic regression model makes
a clean divide between the two.

Statsmodels and Sklearn
The module statsmodels contains a package that includes a logistic regression class called Logit.
A simple example of this class being implemented is as follows.

>>> import statsmodels.api as sm

>>> model = sm.Logit(y, X).fit(disp=0) # setting disp=0 turns off printed info
>>> probs = model.predict(X_test) # list of probabilities, not labels

Logit does not add a constant feature (column of 1’s) to X by default, so in order to do so, you must
apply the function sm.add_constant() to both X and X_test. In addition, the .fit() method does
not regularize the problem by default, which may lead to some errors involving singular matrices. To
fix this, you can use the .fit_regularized() method instead of .fit().

The module sklearn also has a package for logistic regression called LogisticRegression,
which can be implemented as follows.

>>> from sklearn.linear_model import LogisticRegression

>>> model = LogisticRegression(fit_intercept=True).fit(X, y) # X before y
>>> labels = model.predict(X_test) # predicted labels of X_test

LogisticRegression already regularizes the problem by default. The parameter fit_intercept
(which defaults to False) indicates whether you want to add a constant feature (column of 1’s) to
X and X_test.

You can also use sklearn to score a logistic regression model. After fitting an sklearn model,
you can call <model>.score(X_test, y_test) to find the percentage of accuracy of the model’s
prediction for X_test, given the true labels in y_test. Alternatively, you can use sklearn.metrics
.accuracy_score to find the percentage of accuracy between a list of predicted labels and the list
of true labels.

55

>>> from sklearn.metrics import accuracy_score

>>> true_labels = [0, 1, 2, 3, 4]
>>> pred_labels = [0, 2, 2, 2, 4] # predicted labels from logistic regression
>>> accuracy_score(true_labels, predicted_labels)
0.6

Problem 4. The code to generate arrays X, y, X_test, and y_test is provided below. X

and X_test are each composed of 200 draws from two 20-dimensional multivariate normal
distributions, one centered at 0, and the other centered at 2.

Using each of LogiReg, statsmodels, and sklearn, train a logistic regression classifier
on X and y to generate a list of predicted labels for X_test. Then, using y_test, print the
accuracy scores for each trained model. Compare the accuracies and training/testing time for
all three classifiers. Be sure to add a constant feature with each model.

>>> # predefine the true beta
>>> beta = np.random.normal(0, 7, 20)

>>> # X is generated from 2 20-dim. multivariate normal dists.
>>> X = np.concatenate((

np.random.multivariate_normal(np.zeros(20), np.eye(20), 100),
np.random.multivariate_normal(np.ones(20)*2, np.eye(20), 100)
))

>>> np.random.shuffle(X)
>>> # create y based on the true beta
>>> pred = 1. / (1. + np.exp(-X @ beta))
>>> y = np.array([1 if pred[i] >= 1/2 else 0

for i in range(pred.shape[0])])

>>> # X_test and y_test are generated similar to X and y
>>> X_test = np.concatenate((

np.random.multivariate_normal(np.zeros(20), np.eye(20), 100),
np.random.multivariate_normal(np.ones(20), np.eye(20), 100)
))

>>> np.random.shuffle(X_test)
>>> pred = 1. / (1. + np.exp(-X_test @ beta))
>>> y_test = np.array([1 if pred[i] >= 1/2 else 0

for i in range(pred.shape[0])])

Multiclass Logistic Regression
Sometimes we may want to classify data into more than two categories, but so far we’ve only used
logistic regression as a binary classifier. The good news is that we can extend logistic regression to
classify more than just two categories.

56 Lab 6. Logistic Regression

The more popular method for doing this is to generalize the logistic regression model to a mul-
ticlass setting. This method is called multinomial logistic regression or sometimes softmax regression.
While standard logistic regression was based on the sigmoid function, multinomial logistic regression
is based on the softmax function S : Rk → (0, 1)k, which is a multivariate version of the sigmoid
function, given by

S (t1, . . . , tk) =

(
et1∑k
j=1 e

tj
, . . . ,

etk∑k
j=1 e

tj

)
. (6.3)

We will assume that Y
∣∣X is categorically distributed as

Cat(p1(X), . . . , pk(X)) = Cat(S (XTβ1, . . . , X
Tβk))

for some choice of vectors β1, . . . ,βk, which we will estimate from the data. Here

pi(X) = P (Y = i
∣∣X) =

eX
Tβi∑k

j=1 e
XTβj

=
sigm(XTβi)∑k
j=1 sigm(XTβj)

.

Given a draw of length n of the form D = {(x1, y1), . . . , (xn, yn)}, we wish to compute θ =

(β1, . . . ,βk) where, without loss of generality, we may assume βk = 0. The maximum likelihood
estimate of θ is computed in a manner similar to the way it was for standard logistic regression. A
bit of math shows that

ℓ(θ
∣∣D) = −

n∑
i=1

k∑
j=1

δcj (yi) log(pj(xi))

= −
n∑

i=1

k∑
j=1

δcj (yi) log

(
ex

T
iβj∑k

m=1 e
xT
iβm

)

where

δcj (yi) =

{
1 if yi = cj , the jth class
0 otherwise.

This is a convex minimization problem with unique minimizer θ̂. Once θ̂ = (β̂1, . . . , β̂k) is found,
we have an estimate for the probability

P (Y = y
∣∣x) ≈ ex

Tβ̂y∑k
j=1 e

xTβ̂j

.

From this, we can construct a classifier f̂ by setting f̂(x) = argmaxjP (Y = cj
∣∣x).

Conveniently, sklearn has a very simple implementation of multinomial logistic regression that
simply requires the argument multi_class='multinomial' when initiating a LogisticRegression
model.

>>> from sklearn.linear_model import LogisticRegression

>>> model = LogisticRegression(
multi_class='multinomial',
fit_intercept=True).fit(X, y) # add constant feature

57

Problem 5. The Iris Dataset contains information taken from 150 samples of 3 different types
of iris flowers (Setosa, Versicolor, and Virginica). The columns contain measurements for sepal
length, sepal width, pedal length, and pedal width. Import the Iris Dataset and perform a train-
test split on only the first two columns of the data with test_size=0.4. Train a multinomial
logistic regression model using the training data with an added constant feature, and generate
prediction labels for the test data. Plot the test data by color using your prediction labels.

Your plot should reflect Figure 6.3

5 6 7
Sepal Length

2.5

3.0

3.5

4.0

4.5

Se
pa

l W
id

th

Acutal X_test Data

5 6 7
Sepal Length

2.5

3.0

3.5

4.0

4.5

Se
pa

l W
id

th

Predicted X_test Data

Figure 6.3: Multinomial logistic regression attempt to categorize the Iris Dataset.

	to 20ptILabs
	Logistic Regression

