
3 Finding Patterns in
Data: LSI and more
about Scikit-Learn

Lab Objective: Understand the basics of principal component analysis and latent semantic index-
ing. Learn more about scikit-learn and implement a machine learning pipeline.

Principal Component Analysis
Principal Component Analysis (PCA) is a multivariate statistical tool used to change the basis
of a set of samples from the basis of original features (which may be correlated) into a basis of
uncorrelated variables called the principal components. It is a direct application of the singular value
decomposition (SVD). The first principal component will account for the greatest variance in the
samples, the second principal component will be orthogonal to the first and account for the second
greatest variance, etc. By projecting the samples onto the space spanned by the first few principal
components, we can reduce the dimensionality of the data while preserving most of the variance.

Take a matrix X with samples as rows and features as columns. The first step in PCA is to pre-
process the data, which usually includes translating the columns of X to have mean 0. Some datasets
require additional scaling based on variance and units of measurement. Call the new pre-processed
matrix Y .

We next compute the truncated SVD of our centered data, Y = UΣV T , where the columns of
V are the principal components and form an orthonormal basis for the space spanned by the samples.
The variance captured by each principal component can be calculated by the equation below, where
σi is the i-th nonzero singular value and there are k total singular values.

σ2
i∑k

j=1 σ
2
j

(3.1)

In general, we are only interested in the first several principal components. But just how many
principal components should we keep? One method is to keep the first two principal components so
that we can project the data into 2-dimensional space. Another is to only keep the set of principal
components accounting for a certain percentage of the variance, using the equation above.

Once we have decided how many principal components to keep (say the first l), we can project
the samples from the original feature space onto the principal component space by computing

Ŷ = U:,:lΣ:l,:l = Y V:,:l
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Problem 1. The breast cancer dataset from scikit-learn has 569 samples with 30 features each.
Each sample is labeled as 0 (malignant) or 1 (benign). With 30 features, this data can’t be
directly visualized, so we will use PCA to graph the first two principal components, which
account for nearly all of the variance in the data.

You can load this data using the following code.

>>> cancer = sklearn.datasets.load_breast_cancer()
>>> X = cancer.data
>>> y = cancer.target # Class labels (0 or 1)

Write a function that performs PCA on the breast cancer dataset. Graph the first two
principal components, with the first along the x-axis. Your graph should resemble Figure 3.1
below. Include in the graph title the amount of variance captured by the first two principal
components, calculated with Equation 3.1.
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Figure 3.1: First two principal components of the transformed breast cancer data

Latent Semantic Indexing
Latent Semantic Indexing (LSI) is an application of PCA to the realm of natural language processing.
In particular, LSI employs the SVD to reduce the dimensionality of a large corpus of text documents
in order to enable us to evaluate the similarity between two documents. Many information-retrieval
systems used in government and in industry are based on LSI.

To motivate the problem, suppose we have a large collection of documents about various topics.
How can we find an article about BYU? We might consider simply choosing the article that contains
the acronym the greatest number of times, but this is a crude method. A better way is to use a form
of PCA on the collection of documents.
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In order to do so, we need to represent the documents as numerical vectors. A standard
way of doing this is to define an ordered set of words occurring in the collection of documents
(called the vocabulary) and then to represent each document as a vector of word counts from the
vocabulary. More formally, let our vocabulary be V = {w1, w2, . . . , wm}. Then a document is a vector
x = (x1, x2, . . . , xm) ∈ Rm such that xi is the number of occurrences of word wi in the document.
In this setup, we represent the entire collection of m documents as an n×m matrix X, where m is
the number of vocabulary words and n is the number of documents in our collection, so each row
is a document vector. As expected, we let Xi,j be the number of times term j occurs in document
i. Note that X is often a sparse matrix, as any single document likely does not contain most of the
vocabulary words. This mode of representation is called the bag of words model for documents.

We calculate the SVD of X without centering or scaling the data so that we may retain the
sparsity. This is unique to this particular problem. We now have X = UΣV T . If we are keeping l

principal components, we can represent the corpus of documents by the matrix

X̂ = U:,:lΣ:l,:l = XV:,:l

Note that X̂ will no longer be a sparse matrix, but will have dimension n× l.
Now that we have our documents represented in terms of the first l principal components, we

can find the similarity between two documents. Our measure for similarity is simply the cosine of
the angle between the vectors; a small angle (large cosine) indicates greater similarity, while a large
angle (small cosine) indicates greater dissimilarity. Recall that we can use the inner product to find
the cosine of the angle between two vectors. Under this metric, the similarity between document i

and document j (represented by the i-th and j-th row of X̂, notated X̂i and X̂j , respectively) is just

⟨X̂i, X̂j⟩
∥X̂i∥∥X̂j∥

.

To find the document most similar to document i, we simply compute

argmaxj ̸=i

⟨X̂i, X̂j⟩
∥X̂i∥∥X̂j∥

.

Problem 2. Create a function similar that takes in a sparse matrix Xhat and an index i and
returns the indices of the most similar and the least similar documents.

Application: State of the Union
We now discuss some practical issues involved in creating the bag of words representation X from
the raw text. Our dataset will consist of the US State of the Union addresses from 1945 through
2013, each contained in a separate text file in the folder Addresses. We would like to avoid loading
in all of the text into memory at once, and so we will stream the documents one at a time.

The first thing we need to establish is the vocabulary set, i.e. the set of unique words that occur
throughout the collection of documents. A Python set object automatically preserves the uniqueness
of the elements, so we will create a set and then iteratively read through the documents, adding the
unique words of each document to the set. As we read in each document, we will remove punctuation
and numerical characters and convert everything to lower case. The following code, found in the
function document_converter(), will accomplish this task.
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# Get list of file paths to each text file in the folder
>>> folder = "./Addresses/"
>>> paths = [folder+p for p in os.listdir(folder) if p.endswith(".txt")]

# Helper function to get list of words in a string
>>> def extractWords(text):
... ignore = string.punctuation + string.digits
... cleaned = "".join([t for t in text.strip() if t not in ignore])
... return cleaned.lower().split()

# Initialize vocab set, then read each file and add to the vocab set.
>>> vocab = set()
>>> for p in paths:
... with open(p, 'r') as infile:
... for line in infile:
... vocab.update(extractWords(line))

We now have a set containing all of the unique words in the corpus. However, many of the
most common words do not provide important information. We call these stop words. Examples in
English include the, a, an, and, I, we, you, it, there, etc; a list of common English stop words is given
in stopwords.txt. We remove the stop words from our vocabulary set as follows and then fix an
ordering to the vocabulary by creating a dictionary with key-value pairs of the form (word, index).

# Load stopwords.
>>> with open("stopwords.txt", 'r') as f:
... stops = set([w.strip().lower() for w in f.readlines()])

# Remove stopwords from vocabulary, create ordering.
>>> vocab = {w:i for i, w in enumerate(vocab.difference(stops))}

We are now ready to create the word count vectors for each document, and we store these in a
sparse matrix X. It is convenient to use the Counter object from the collections module, as this
object automatically counts the occurrences of each distinct element in a list.

>>> from collections import Counter
>>> counts = [] # holds the entries of X
>>> doc_index = [] # holds the row index of X
>>> word_index = [] # holds the column index of X

# Iterate through the documents.
>>> for doc, p in enumerate(paths):
... with open(p, 'r') as f:
... # create the word counter
... ctr = Counter()
... for line in f:
... ctr.update(extractWords(line))
... # Iterate through the word counter, storing counts
... for word, count in ctr.items():
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... if word in vocab:

... word_index.append(vocab[word])

... counts.append(count)

... doc_index.append(doc)

# Create sparse matrix holding these word counts.
>>> X = sparse.csr_matrix((counts, [doc_index, word_index]),
... shape=(len(paths), len(vocab)), dtype=np.float)

Problem 3. Applying the techniques of LSI discussed above to the word count matrix X, and
keeping the first 7 principal components, write a function that takes in the path to a single
State of the Union address speech and returns a tuple of the addresses that are most and least
similar to speech. For Ronald Reagan’s 1984 speech, the input would be ‘./Addresses/1984-
Reagan.txt’, and your output should be (’1988-Reagan’, ’1946-Truman’). Be sure to format the
strings properly.

Since X is a sparse matrix, you will need to use the SVD method found in scipy.
sparse.linalg. This method operates slightly differently than the SVD method found in
scipy.linalg, so be sure to read the documentation.

The simple bag of words representation is a bit crude, as it fails to consider how some words
may be more important than others in determining the similarity of documents. Words appearing
in few documents tend to provide more information than words occurring in every document. For
example, while the word war might not be considered a stop word, it is likely to appear in many
more addresses than the word Afghanistan. Two speeches sharing the word Afghanistan are probably
more closely related than two speeches sharing the word war. So while Xi,j is a good measure of
the importance of term j in document i, we also need to consider some kind of global weight for
each term j, indicating how important the term is over the entire collection. There are a number of
different weights we could choose; we will employ the following approach. Define

pi,j =
Xi,j∑
j Xi,j

.

We then let

gj = 1 +

m∑
i=1

pi,j log(pi,j + 1)

logm
,

where m is the number of documents in the collection. We call gj the global weight of term j. We
replace each term frequency in the matrix X by weighting it globally. Specifically, we define a matrix
A with entries

Ai,j = gj log(Xi,j + 1).

We can now perform LSI on the matrix A, whose entries are both locally and globally weighted.

Problem 4. Use the equation above to edit the function weighted_document_converter()
to calculate the sparse matrix A. Similar to the function document_converter(), this function
should return A and a list of file paths.
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Scikit-Learn

Scikit-learn is one of the fundamental tools Python offers for machine learning. It includes classi-
fiers, such as RandomForestClassifier and KNeighborsClassifier, as well as transformers, which
preprocess data before classification. In the remainder of this lab, we will discuss transformers,
validation tools, how to find optimal hyperparameters, and how to build a machine learning pipeline.

Transformers

A scikit-learn transformer processes data to make it better suited for classification. This may involve
shifting or scaling data, dropping columns, replacing missing values, and so on. The function from
Problem 4 is an example of a transformer, as is PCA.

Note

A hyperparameter is not dependent on data. Hyperparameters are declared in the constructor
__init__(), before data is even passed in. Parameters set during the fit() method are often
called model parameters and do depend on specific data. For example, a StandardScaler
transformer shifts and scales data to have a mean of 0 and a standard deviation of 1.

Scikit-learn’s transformers have three main methods: fit_transform(), which fits model
parameters and also transforms given data; fit(), which sets model parameters but does not
perform a transformation; and transform(), which transforms data according to pre-fitted
model parameters. Model parameters are fitted according to training data, and they are not
refitted to testing data, so a StandardScaler will shift and scale testing data according to the
mean and variance of the training data; the transformed test data likely will not have mean 0
and variance 1.

Scikit-learn has a built-in PCA package. Its hyperparameters include the desired number of
principal components and the type of SVD solver to use. Its fit_transform() method takes in an
array of data and returns the decomposition with n_components.

>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=5) # Create the PCA transformer with hyperparameters
>>> Xhat = pca.fit_transform(X) # Fit the transformer and transform the data

Problem 5. Repeat Problem 3 using your weighted document converter function and scikit-
learn’s built-in PCA decomposition. Do your answers seem more reasonable than before? For
Bill Clinton’s 1993 speech, your code should return (’./Addresses/1994-Clinton.txt’, ’./Addresses/1951-
Truman.txt’).

Hint: Scikit-learn’s PCA does not accept sparse matrices.
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Validation Tools

We now turn our attention from transformers to classifiers. A classifier is trained to predict how a
new sample should be classified or labeled. Knowing how to determine whether or not a classifier
performs well is an essential part of machine learning. This often turns out to be a surprisingly
sophisticated issue that largely depends on the type of problem being solved and the kind of data
that is available for training. Scikit-learn has validation tools for many situations; for brevity, we
restrict our attention to the simple (but important) case of binary classification, where the possible
labels are only 0 or 1.

The score() method of a scikit-learn classifier returns the accuracy of the model, or the percent
of labels predicted correctly. However, accuracy isn’t always the best measure of success. Consider
the confusion matrix for a classifier, the matrix where the (i, j)th entry is the number of samples
with actual label i but that are classified with label j. Call the class with label 0 the negatives and
the class with label 1 the positives. Then the confusion matrix is as follows.

Predicted: 0 Predicted: 1[ ]
Actual: 0 True Negatives (TN) False Positives (FP )

Actual: 1 False Negatives (FN) True Positives (TP )

With this terminology, we define the following metrics.

• Accuracy :
TN + TP

TN + FN + FP + TP
, the percent of labels predicted correctly.

• Precision:
TP

TP + FP
, the percent of predicted positives that are actually correct.

• Recall :
TP

TP + FN
, the percent of actual positives that are predicted correctly.

Precision is useful in situations where false positives are dangerous or costly, while recall is
important when avoiding false negatives takes priority. For example, an email spam filter should
avoid filtering out an email that isn’t actually spam; here a false positive is more dangerous, so
precision is a valuable metric for the filter. On the other hand, recall is more important in disease
detection: it is better to test positive and not have the disease than to test negative when the disease
is actually present. Focusing on a single metric often leads to skewed results, so the following metric
is also common.

Fβ Score : (1 + β2)
precision · recall

(β2 · precision) + recall
=

(1 + β2)TP

(1 + β2)TP + FP + β2FN
.

Choosing β < 1 weighs precision more than recall, while β > 1 prioritizes recall over precision.
The choice of β = 1 yields the common F1 score, which weighs precision and recall equally. This is
an important alternative to accuracy when, for example, the training set is heavily unbalanced with
respect to the class labels.

Scikit-learn implements all of these metrics in sklearn.metrics. The general syntax for
such functions is some_score(actual_labels, predicted_labels). We will be using the func-
tion classification_report(), which returns precision, recall, and F1 scores for each label. Each
row in the report corresponds to a specific label and gives the scores with its label as the "positive"
classification. For example, in binary classification, the row corresponding to 1 gives the scores as
they would normally be calculated, with 1 as "positive."
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>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.metrics import confusion_matrix, classification_report
>>> from sklearn.model_selection import train_test_split

# Split the data into training and testing sets
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)

# Fit the esimator to training data and predict the test labels.
>>> knn = KNeighborsClassifier(n_neighbors=2)
>>> knn.fit(X_train, y_train)
>>> knn_predicted = knn.predict(X_test)

# Compute the confusion matrix by comparing actual labels to predicted labels.
>>> CM = confusion_matrix(y_test, knn_predicted)
>>> CM
array([[44, 5],

[10, 84]])

# Get precision, recall, and F1 scores all at once.
# The row labeled 1 gives these scores as we normally calculate them.
>>> print(classification_report(y_test, knn_predicted))

precision recall f1-score support

0 0.81 0.90 0.85 49
1 0.94 0.89 0.92 94

accuracy 0.90 143
macro avg 0.88 0.90 0.89 143

weighted avg 0.90 0.90 0.90 143

Problem 6. For this problem, use the cancer dataset from Problem 1 to compare a RandomForestClassifier
and a KNeighborsClassifier, using the default parameters for each.

Use train_test_split() with random_state=2 to split up the data. Fit the classifiers
with the training set and predict the labels for the testing set. Print out a classification report
for each classifier, making sure to clearly label which report corresponds to which classifier.

Write a few sentences explaining which of these classifiers would be better to use in this
situation and why, using the information from the report as evidence. Remember that in this
dataset, the label 1 means benign and 0 means malignant.
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Grid Search

Finding the optimal hyperparameters for a given model is a challenging and active area of research.1

However, brute-force searching over a small hyperparameter space is simple in scikit-learn: a sklearn
.model_selection.GridSearchCV object is initialized with a classifier, a dictionary of hyperparam-
eters, and some validation parameters. When its fit() method is called, it tests the given classifier
with every possible hyperparameter combination.

For example, a KNeighborsClassifier has a few important hyperparameters that can have a
significant impact on the speed and accuracy of the model. These include n_neighbors, the number
of nearest neighbors allowed to vote, and weights, which specifies a strategy for weighting the
distances between points. The code box below tests various combinations of these hyperparameters.

The cost of a grid search rapidly increases as the hyperparameter space grows. However, the
outcomes of each trial are completely independent of each other, so the problem of training each
classifier is embarassingly parallel, meaning the trials can easily be computed simultaneously. To
parallelize the grid search over n CPU cores, set the n_jobs parameter to n, or set it to −1 to divide
the labor between as many cores as are available.

>>> from sklearn.model_selection import GridSearchCV

>>> knn = KNeighborsClassifier()
# Specify values for certain hyperparameters
>>> param_grid = {"n_neighbors": [2, 3, 4, 5, 6],
... "weights": ["uniform", "distance"]}
>>> knn_gs = GridSearchCV(knn, param_grid, scoring="f1", n_jobs=-1)

# Run the actual search. This may take some time.
>>> knn_gs.fit(X_train, y_train)

# After fitting, you can access data about the results.
>>> print(knn_gs.best_params_, knn_gs.best_score_, sep='\n')
{'n_neighbors': 5, 'weights': 'uniform'}
0.9532526583188765

# Access the model
>>> knn_gs.best_estimator_
KNeighborsClassifier(weights='distance')

In some circumstances, the parameter grid can be organized in a way that eliminates redun-
dancy. For example, with a RandomForestClassifier, you could test each max_depth argument
with entirely different sets of values for min_samples_leaf. To specify certain combinations of
parameters, enter the parameter grid as a list of dictionaries.

Problem 7. Do a grid search on the breast cancer dataset using a RandomForestClassifier.
Modify at least three parameters in your grid. Use scoring="f1" for the GridSearchCV object.
Fit your model with the same train-test split as in Problem 6. Print out the best parameters
and the best score.

1Intelligent hyperparameter selection is sometimes called metalearning.
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Next, use the GridSearchCV object to predict labels for your test set. Print out a confusion
matrix using these values.

Pipelines
Most machine learning problems require at least a little data preprocessing before estimation in
order to get good results. A scikit-learn pipeline chains together one or more transformers and one
estimator (such as a classifier) into a single object, complete with fit() and predict() methods.
This simplifies and automates the machine learning process so that when you get new data or make
changes to various functions and features, you can easily rerun the new version from beginning to
end.

The following example demonstrates how to use a pipeline with a StandardScaler transformer
and a KNeighborsClassifier. Like classifiers, pipelines have fit(), predict(), and score() meth-
ods. Each member of the pipeline is declared as a tuple where the first element is a string naming
the step and the second is the actual transformer or classifier.

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.pipeline import Pipeline

# Chain together a StandardScaler transformer and a KNN classifier.
>>> pipe = Pipeline([("scaler", StandardScaler()), # "scaler" is the step name
... ("knn", KNeighborsClassifier())]) # "knn" is the step name
>>> pipe.fit(X_train, y_train)
>>> pipe.score(X_test, y_test)
0.972027972027972

Since Pipeline objects follow fit() and predict() conventions, they can be used with tools
like GridSearchCV. To specify which hyperparameters belong to which steps of the pipeline, precede
each hyperparameter name with <stepname>__. For example, knn__n_neighbors corresponds to
the n_neighbors hyperparameter of the pipeline step labeled knn.

# Create the Pipeline, labeling each step.
>>> pipe = Pipeline([("scaler", StandardScaler()),

("knn", KNeighborsClassifier())])

# Specify the hyperparameters to test for each step.
>>> pipe_param_grid = {"scaler__with_mean": [True, False],
... "scaler__with_std": [True, False],
... "knn__n_neighbors": [2,3,4,5,6],
... "knn__weights": ["uniform", "distance"]}

# Pass the Pipeline object to the GridSearchCV and fit it to the data.
>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,
... n_jobs=-1).fit(X_train, y_train)

>>> print(pipe_gs.best_params_, pipe_gs.best_score_, sep='\n')
{'knn__n_neighbors': 6, 'knn__weights': 'distance',
'scaler__with_mean': True, 'scaler__with_std': True}
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0.971830985915493

Pipelines can also be used to compare different transformations or estimators. For example, a
pipeline can end in either a KNeighborsClassifier() or a classifier called SVC(), even though they
have different hyperparameters. Like before, you can use a list of dictionaries to specify the specific
combinations of the hyperparameter space.

# Create the pipeline, using any classifier as a placeholder
>>> pipe = Pipeline([("scaler", StandardScaler()),

("classifier", KNeighborsClassifier())])

# Create the grid
>>> pipe_param_grid = [
... {"classifier": [KNeighborsClassifier()], # Try a KNN classifier...
... "classifier__n_neighbors": [2,3,4,5],
... "classifier__weights": ["uniform", "distance"]},
... {"classifier": [SVC(kernel="rbf")], # ...and an SVM classifier.
... "classifier__C": [.001, .01, .1, 1, 10, 100],
... "classifier__gamma": [.001, .01, .1, 1, 10, 100]}]

# Fit using training data
>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,
... scoring="f1", n_jobs=-1).fit(X_train, y_train)

# Get the best hyperparameters
>>> params = pipe_gs.best_params_
>>> print("Best classifier:", params["classifier"])
Best classifier: SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

# Check the best classifier against the test data
>>> confusion_matrix(y_test, pipe_gs.predict(X_test))
array([[48, 1], # Near perfect!

[ 1, 93]])

Problem 8. The breast cancer dataset has 30 features. By using PCA, we can drastically
reduce the dimensionality while still retaining predictive power.

Create a pipeline with a StandardScaler, PCA, and a KNeighborsClassifier. Use the
same train-test split as before. Do a grid search on this pipeline, modifying at least six hy-
perparameters and using scoring="f1". Use no more than 5 principal components. Print out
your best parameters and best score. Attain a score of at least .96.

Hint: The documentation for StandardScaler, PCA, and KNeighborsClassifier can be
found at these links.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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