
17 Non-negative Matrix
Factorization

Lab Objective: Understand and implement the non-negative matrix factorization generator for
recommendation systems with CVXPY.

Introduction
Collaborative filtering is the process of filtering data for patterns using collaboration techniques.
More specifically, it refers to making prediction about a user’s interests based on other users’ interests.
These predictions can be used to recommend items and are why collaborative filtering is one of the
common methods of creating a recommendation system.

Recommendation systems look at the similarity between users to predict what item a user is
most likely to enjoy. Common recommendation systems include Netflix’s "Movies you Might Enjoy"
list, Spotify’s "Discover Weekly" playlist, and Amazon’s "Products You Might Like" suggestions.

Non-negative Matrix Factorization
Non-negative matrix factorization is one algorithm used in collaborative filtering. It can be applied
to many other cases, including image processing, text mining, clustering, and community detection.
The objective of non-negative matrix factorization is to take a non-negative matrix V and factor it
into the product of two non-negative matrices.

For V ∈ Rm×n, 0 �W ,

minimize ||V −WH||
subject to 0 �W, 0 � H

where W ∈ Rm×k, H ∈ Rk×n

k is the rank of the decomposition and can either be specified or found using the Root Mean
Squared Error (the square root of the MSE), SVD, Non-negative Least Squares, or cross-validation
techniques.

171

172 Lab 17. Non-negative Matrix Factorization

For this lab, we will use the Frobenius norm, given by

||A||F =

√√√√ m∑
i=1

n∑
j=1

|a|2ij .

It is equivalent to the square root of the sum of the diagonal of AHA.

Problem 1. Create the NMFRecommender class, which will be used to implement the NMF
algorithm. Initialize the class with the following parameters: random_state defaulting to 15,
tol defaulting to 1e− 3, maxiter defaulting to 200, and rank defaulting to 3.

Add a method called initialize_matrices that takes in m and n, the dimensions of V .
Set the random seed so that initializing the matrices can be replicated:

np.random.seed(self.random_state)

Initialize W and H using randomly generated numbers between 0 and 1, where W ∈ Rm×k and
H ∈ Rk×n, where k=rank. Store W and H as attributes and return them.

CVXPY
In order to compute the NMF of a matrix we will use the convex optimization package CVXPY. CVXPY
is convex optimization package that takes a problem, converts it into standard form, calls a solver,
and processes the result. Here is a basic example of how to use CVXPY

import cvxpy as cp

Create two scalar optimization variables.
x = cp.Variable()
y = cp.Variable()

Create two constraints.
constraints = [x + y == 1,

x - y >= 1]

Form objective.
obj = cp.Minimize((x - y)**2)

Form and solve problem.
prob = cp.Problem(obj, constraints)
prob.solve() # Returns the optimal value.

print the status of the solution
print(prob.status)

The variables x and y are updated as the problem is solved. Constraints are not required.

173

Vector valued variables can be created by including the dimension of the variable as an argument
like so: x = cp.Variable(10). Similarly matrix valued variables can be created: x = cp.Variable
((5,5)).

When initialized, variables have values of None. A value can be assigned to a variable before a
problem is solved. The value can also be extracted after the optimal solution to a problem is found.

import numpy as np

random_matrix = np.random.random((5,5))
x = cp.Variable((5,5))
x.value = random_matrix
'''
solve a problem using the variable x
'''
solution_matrix = x.value

Problem 2. Finish the NMF class by adding a method fit that uses CVXPY to find an optimal
W and H. It should accept V as a numpy array.

Constructing the problem so that it is known to be convex is important. Unfortunately,
optimizing over 2 matrices being multiplied together breaks the rules of disciplined convex
programming. Because of this, you must solve for W and H alternately. First solve for an
optimal W given an H, then use that W to solve for an optimal H and so on. Continue until
the difference between W and H and their previous values both have a Frobenius norm less
than tol.

Finally, add a method called reconstruct that reconstructs and returns V by multiplying
W and H.

HINT: You can build non-negativity into a CVXPY variable with x = cp.Variable(n,
nonneg=True). You can check if the solution is optimal by checking the status of your problem
object with prob.status.

Using NMF for Recommendations

Consider the following marketing problem where we have a list of five grocery store customers and
their purchases. We want to create personalized food recommendations for their next visit. We start
by creating a matrix representing each person and the number of items they purchased in different
grocery categories. So from the matrix, we can see that John bought two fruits and one sweet.

V =

John Alice Mary Greg Peter Jennifer

0 1 0 1 2 2 V egetables

2 3 1 1 2 2 Fruits

1 1 1 0 1 1 Sweets

0 2 3 4 1 1 Bread

0 0 0 0 1 0 Coffee

174 Lab 17. Non-negative Matrix Factorization

After performing NMF on V , we’ll get the following W and H.

W =

Component1 Component2 Component3

2.19 0. 0.03 V egetables

1.53 3.13 0.11 Fruits

0.61 1.58 0. Sweets

0.01 0. 1.88 Bread

0.47 0. 0. Coffee

H =

John Alice Mary Greg Peter Jennifer 0. 0.43 0. 0.42 0.96 0.86 Component1

0.64 0.66 0.34 0. 0.18 0.22 Component2

0. 1.06 1.58 2.12 0.52 0.53 Component3

W represents how much each grocery feature contributes to each component; a higher weight
means it’s more important to that component. For example, component 1 is heavily determined by
vegetables followed by fruit, then coffee, sweets and finally bread. Component 2 is represented almost
entirely by bread, while component 3 is based on fruits and sweets, with a small amount of bread.
H is similar, except instead of showing how much each grocery category affects the component, it
shows a much each person belongs to the component, again with a higher weight indicating that the
person belongs more in that component. We can see the John belongs in component 3, while Jennifer
mostly belongs in component 1.

To get our recommendations, we reconstruct V by multiplying W and H.

WH =

John Alice Mary Greg Peter Jennifer

0. 0.9735 0.0474 0.9834 2.118 1.8993 V egetables

2.0032 2.8403 1.238 0.8758 2.0894 2.0627 Fruits

1.0112 1.3051 0.5372 0.2562 0.87 0.8722 Sweets

0. 1.9971 2.9704 3.9898 0.9872 1.005 Bread

0. 0.2021 0. 0.1974 0.4512 0.4042 Coffee

Most of the zeros from the original V have been filled in. This is the collaborative filtering
portion of the algorithm. By sorting each column by weight, we can predict which items are more
attractive to the customers. For instance, Mary has the highest weight for bread at 2.9835, followed
by fruit at 1.2435 and then sweets at .533. So we would recommend bread to Mary.

Another way to interpret WH is to look at a feature and determine who is most likely to buy
that item. So if we were having a sale on sweets but only had funds to let three people know, using
the reconstructed matrix, we would want to target Alice, John, and Jennifer in that order. This gives
us more information that V alone, which says that everyone except Greg bought one sweet.

Problem 3. Use the NMFRecommender class to run NMF on V , defined above, with 2 compo-
nents. Return W , H, and the number of people who have higher weights in component 2 than
in component 1.

175

Sklearn NMF
We also can compute the NMF using SkLearn. SkLearn uses a similar process as our class above.
Here rank is represented by the parameter n_components.

from sklearn.decomposition import NMF

model = NMF(n_components=2, init='random', random_state=0)
W = model.fit_transform(V)
H = model.components_

SkLearn’s NMF has other parameters that can also be included and adjusted. The l1_ratio is a
value between 0 and 1 that gives a ratio of how much to weigh the l1 and l2 norms. When l1_ratio
= 1, the l1 norm is used. When l1_ratio = 0, the l2 norm (Frobenius norm) is used. Any value
between 0 and 1 is a weighted combination of the l1 and l2 norms. This ratio helps to prevent the
model from over-fitting. The alpha parameter is a float that represents a regularization constant;
the default of 0 means that W and H are scaled by the number of features and number of samples
respectively.

Endmember Detection using NMF
NMF can be used for analysis and identification of images. If each image corresponds to a j×k array
of pixel intensities, then the data matrix is constructed by flattening the image into a vector of length
jk and using these vectors as the columns of V , so V has dimensions jk × n, where n is the number
of images to analyze. Typically the materials in an image are referred to as the endmembers, which
can be thought of as basis images which can be combined to reconstruct any image in the dataset. In
the NMF decomposition H[k, j] represents the abundance of the kth endmember or basis face in the
jth image. W [:, k] represents the spectral signature of the kth endmember. Then V [:, j] uWH[:, j].

Example
This example exhibits how to use SkLearn’s NMF class. The example begins with augmenting and
reformatting the images; this will be done for you in the problems following the example. Pay special
attention to last two blocks of code which demonstrate using NMF with properly formatted images
and plotting the results.

from sklearn.datasets import load_sample_images
import numpy as np

function to convert colored image to gray scale image
def gray_convert(rgb):

r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray

load in sample images
dataset = load_sample_images()
grab the first image
image = dataset.images[0]

176 Lab 17. Non-negative Matrix Factorization

convert image to gray scale
image = gray_convert(image)

get augmentations for additional images
flipLR = np.fliplr(image)
flipUP = np.flipud(image)

create matrix V
images = [np.ravel(image),np.ravel(flipLR),np.ravel(flipUP)]
images = np.transpose(images)

decompose using NMF
model = NMF(n_components = 5,max_iter = 1000)
W = model.fit_transform(images)
H = model.components_

plot basis images
plt.subplots_adjust(wspace = .02,hspace = .05)
plt.figure(figsize=(20, 8))
for i in range(W.shape[1]):

plt.subplot(1,5,i+1)
plt.xticks([], [])
plt.yticks([],[])
plt.imshow(np.reshape(W[:,i],(427,640)),cmap = 'gray')

The following three flattened images now make up the columns of V .

Figure 17.1: Original Images

Using a rank 5 reconstruction we see that the features used to reconstruct each image deal with
the orientation of the building as well as the positive and negative space in each building.

Figure 17.2: Basis images for a rank 5 deconstruction. Each basis image comes from a column of W .

177

For the next two problems we will be using a dataset of facial images that we can load in with
the code below. Notice that get_faces formats the faces and returns the V matrix for the face
images.

def get_faces(path="./faces94"):
"""Traverse the specified directory to obtain one image per subdirectory.

Flatten and convert each image to grayscale.

Parameters:
path (str): The directory containing the dataset of images.

Returns:
((mn,k) ndarray) An array containing one column vector per

subdirectory. k is the number of people, and each original
image is mxn.

"""

Traverse the directory and get one image per subdirectory.
faces = []
for (dirpath, dirnames, filenames) in os.walk(path):

for fname in filenames:
if fname[-3:]=="jpg": # Only get jpg images.

Load the image, convert it to grayscale,
and flatten it into a vector.
faces.append(np.ravel(imread(dirpath+"/"+fname, as_gray=True)))
break

Put all the face vectors column-wise into a matrix.
return np.transpose(faces)

def show(image, m=200, n=180, plt_show=False):
"""Plot the flattened grayscale 'image' of width 'w' and height 'h'.

Parameters:
image ((mn,) ndarray): A flattened image.
m (int): The original number of rows in the image.
n (int): The original number of columns in the image.
plt_show (bool): if True, call plt.show() at the end

"""
#scale image
image = image / 255
#reshape image
image = np.reshape(image,(m,n))
#show image
plt.imshow(image,cmap = "gray")

if plt_show:
plt.show()

178 Lab 17. Non-negative Matrix Factorization

Similar to the example, we have basis faces that are used to reconstruct the images in the original
dataset. A sample of basis faces for a rank 75 reconstruction of the faces dataset seem to correspond
to the following endmembers: forehead, glasses, hair.

Figure 17.3: A sample of basis faces. Each basis face comes from a column of W .

Problem 4. Load in the facial dataset. SkLearn has the option to add regularization terms,
alpha and l1_ratio, to the objective function ||V −WH||. Reconstruct the third face in the
dataset using SkLearn’s NMF. Perform a grid search over the following: n_components = [75],
alpha = [0, .2, .5], and l1_ratio = [0, 10−5, 1].
A grid search is a way to hone in on the best parameters by looping through a "grid" of values.
It involves running the process for each combination of parameters in the grid. For example, a
grid search will run NMF with n_components = 75, alpha = 0, and l1_ratio = 0, then again
with n_components = 75, alpha = 0, and l1_ratio = 10−5, and so on, with all combinations
of values. Note this will take a while to run (approximately 10 minutes) since it will run and
fit the NMF model 9 total times.
Determine which set of parameters best reconstructs the face. These are the parameters that
most closely approximate the third face with W and H. (Hint: For each set of parameters, find
the norm of faces[:,2] - W @ H[:,2] and see which is the smallest. Due to the randomness
of the algorithm, answers may vary. Additionally, notice how we only look at the third face to
avoid large matrix multiplication, which is computationally expensive.)
Plot all reconstructions of the third face and put the parameters in the title; use subplots.

Problem 5. Run NMF on the facial dataset again, using the best parameters from the problem
above. Next, for the second and twelfth faces in the dataset, find the 10 basis faces with the
largest coefficients. Plot these basis faces along with the original image using subplots. In a
markdown block write a sentence or two about differences you notice in the features of the basis
faces (look closely).

	to 20ptILabs
	Non-negative Matrix Factorization

