
15 Introduction to Parallel
Computing

Lab Objective: Many modern problems involve so many computations that running them on a
single processor is impractical or even impossible. There has been a consistent push in the past few
decades to solve such problems with parallel computing, meaning computations are distributed to
multiple processors. In this lab, we explore the basic principles of parallel computing by introducing
the cluster setup, standard parallel commands, and code designs that fully utilize available resources.

Parallel Architectures
Imagine that you are in charge of constructing a very large building. You could, in theory, do all of
the work yourself, but that would take so long that it simply would be impractical. Instead, you
hire workers, who collectively can work on many parts of the building at once. Managing who does
what task takes some effort, but the overall effect is that the building will be constructed many
times faster than if only one person was working on it. This is the essential idea behind parallel
computing.
A serial program is executed one line at a time in a single process. This is analogous to a single
person creating a building. Since modern computers have multiple processor cores, serial programs
only use a fraction of the computer’s available resources. This is beneficial for smooth multitasking
on a personal computer because multiple programs can run at once without interrupting each other.
For smaller computations, running serially is fine. However, some tasks are large enough that
running serially could take days, months, or in some cases years. In these cases it is beneficial to
devote all of a computer’s resources (or the resources of many computers) to a single program by
running it in parallel. Each processor can run part of the program on some of the inputs, and the
results can be combined together afterwards. In theory, using N processors at once can allow the
computation to run N times faster. Even though communication and coordination overhead
prevents the improvement from being quite that good, the difference is still substantial.
A computer cluster or supercomputer is essentially a group of regular computers that share their
processors and memory. There are several common architectures that are used for parallel
computing, and each architecture has a different protocol for sharing memory, processors, and tasks
between computing nodes, the different simultaneous processing areas. Each architecture offers
unique advantages and disadvantages, but the general commands used with each are very similar.
In this lab, we will explore the usage and capabilities of parallel computing using Python’s
iPyParallel package. iPyParallel can be installed with either pip or conda:
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$ pip install ipyparallel

$ conda install ipyparallel

The iPyParallel Architecture
There are three main parts of the iPyParallel architecture:

• Client : The main program that is being run.

• Controller : Receives directions from the client and distributes instructions and data to the
computing nodes. Consists of a hub to manage communications and schedulers to assign
processes to the engines.

• Engines: The individual processors. Each engine is like a separate Python terminal, each
with its own namespace and computing resources.

Essentially, a Python program using iPyParallel creates a Client object connected to the cluster
that allows it to send tasks to the cluster and retreive their results. The engines run the tasks, and
the controller manages which engines run which tasks.

Figure 15.1: An outline of the iPyParallel architecture.

Setting up an iPyParallel Cluster
Before being able to use iPyParallel in a script or interpreter, it is necessarty to start an iPyParallel
cluster. We demonstrate here how to use a single machine with multiple processor cores as a
cluster. Establishing a cluster on multiple machines requires additional setup, which is detailed in
the Additional Material section. The following commands initialize parts or all of a cluster when
run in a terminal window:
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Command Description
ipcontroller start Initialize a controller process.

ipengine start Initialize an engine process.
ipcluster start Initialize a controller process and several engines simultaneously.

Each of these processes can be stopped with a keyboard interrupt (Ctrl+C). By default, the
controller uses JSON files in UserDirectory/.ipython/profile-default/security/ to
determine its settings. Once a controller is running, it acts like a server, listening connections from
clients and engines. Engines will connect automatically to the controller when they start running.
There is no limit to the number of engines that can be started in their own terminal windows and
connected to the controller, but it is recommended to only use as many engines as there are cores to
maximize efficiency.

Achtung!

The directory that the controller and engines are started from matters. To facilitate connections,
navigate to the same folder as your source code before using ipcontroller, ipengine, or
ipcluster. Otherwise, the engines may not connect to the controller or may not be able to
find auxiliary code as directed by the client.

Starting a controller and engines in individual terminal windows with ipcontroller and ipengine
is a little inconvenient, but having separate terminal windows for the engines allows the user to see
individual errors in detail. It is also actually more convenient when starting a cluster of multiple
computers. For now, we use ipcluster to get the entire cluster started quickly.

$ ipcluster start # Assign an engine to each processor core.
$ ipcluster start --n 4 # Or, start a cluster with 4 engines.

Note

Jupyter notebooks also have a Clusters tab in which clusters can be initialized using an
interactive GUI. To enable the tab, run the following command. This operation may require
root permissions.

$ ipcluster nbextension enable

The iPyParallel Interface
Once a controller and its engines have been started and are connected, a cluster has successfully
been established. The controller will then be able to distribute messages to each of the engines,
which will compute with their own processor and memory space and return their results to the
controller. The client uses the ipyparallel module to send instructions to the controller via a
Client object.
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>>> from ipyparallel import Client

>>> client = Client() # Only works if a cluster is running.
>>> client.ids
[0, 1, 2, 3] # Indicates that there are four engines running.

Once the client object has been created, it can be used to create one of two classes: a DirectView
or a LoadBalancedView. These views allow for messages to be sent to collections of engines
simultaneously. A DirectView allows for total control of task distribution while a
LoadBalancedView automatically tries to spread out the tasks equally on all engines. The
remainder of the lab will be focused on the DirectView class.

>>> dview = client[:] # Group all engines into a DirectView.
>>> dview2 = client[:2] # Group engines 0,1, and 2 into a DirectView.
>>> dview2.targets # See which engines are connected.
[0, 1, 2]

Since each engine has its own namespace, modules must be imported in every engine. There is
more than one way to do this, but the easiest way is to use the DirectView object’s execute()
method, which accepts a string of code and executes it in each engine.

# Import NumPy in each engine.
>>> dview.execute("import numpy as np")

# Make sure to include client.close() after each function or else the test ←↩
driver will time out

client.close()

Problem 1. Write a function that initializes a Client object, creates a DirectView with all
available engines, and imports scipy.sparse as sparse on all engines. Return the DirectView.
Note: Make sure to include client.close() after EVERY function or else the test driver will time
out.

Managing Engine Namespaces

Before continuing, set the DirectView you are using to use blocking:

>>> dview.block = True

This affects the way that functions called using the DirectView return their values. Using blocking
makes the process simpler, so we will use it initially. What blocking is will be explained later.
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Push and Pull

The push() and pull() methods of a DirectView object manage variable values in the engines.
Use push() to set variable values and pull() to get variables. Each method also has a shortcut via
indexing.

# Initialize the variables 'a' and 'b' on each engine.
>>> dview.push({'a':10, 'b':5}) # OR dview['a'] = 10; dview['b'] = 5
[None, None, None, None] # Output from each engine

# Check the value of 'a' on each engine.
>>> dview.pull('a') # OR dview['a']
[10, 10, 10, 10]

# Put a new variable 'c' only on engines 0 and 2.
>>> dview.push({'c':12}, targets=[0, 2])
[None, None]

Problem 2. Write a function variables(dx) that accepts a dictionary of variables. Create
a Client object and a DirectView and distribute the variables. Pull the variables back and
make sure they haven’t changed.

Scatter and Gather

Parallelization almost always involves splitting up collections and sending different pieces to each
engine for processing. The process is called scattering and is usually used for dividing up arrays or
lists. The inverse process of pasting a collection back together is called gathering and is usually
used on the results of processing. This method of distributing a dataset and collecting the results is
common for processing large data sets using parallelization.

>>> import numpy as np

# Send parts of an array of 8 elements to each of the 4 engines.
>>> x = np.arange(1, 9)
>>> dview.scatter("nums", x)
>>> dview["nums"]
[array([1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]

# Scatter the array to only the first two engines.
>>> dview.scatter("nums_big", x, targets=[0,1])
>>> dview.pull("nums_big", targets=[0,1])
[array([1, 2, 3, 4]), array([5, 6, 7, 8])]

# Gather the array again.
>>> dview.gather("nums")
array([1, 2, 3, 4, 5, 6, 7, 8])
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>>> dview.gather("nums_big", targets=[0,1])
array([1, 2, 3, 4, 5, 6, 7, 8])

Executing Code on Engines
Execute

The execute() method is the simplest way to run commands on parallel engines. It accepts a string
of code (with exact syntax) to be executed. Though simple, this method works well for small tasks.

# 'nums' is the scattered version of np.arange(1, 9).
>>> dview.execute("c = np.sum(nums)") # Sum each scattered component.
<AsyncResult: execute:finished>
>>> dview['c']
[3, 7, 11, 15]

Apply

The apply() method accepts a function and arguments to plug into it, and distributes them to the
engines. Unlike execute(), apply() returns the output from the engines directly.

>>> dview.apply(lambda x: x**2, 3)
[9, 9, 9, 9]
>>> dview.apply(lambda x,y: 2*x + 3*y, 5, 2)
[16, 16, 16, 16]

Note that the engines can access their local variables in either of the execution methods.

Map

The built-in map() function applies a function to each element of an iterable. The iPyParallel
equivalent, the map() method of the DirectView class, combines apply() with scatter() and
gather(). Simply put, it accepts a dataset, splits it between the engines, executes a function on
the given elements, returns the results, and combines them into one object.

>>> num_list = [1, 2, 3, 4, 5, 6, 7, 8]
>>> def triple(x): # Map a function with a single input.
... return 3*x
...
>>> dview.map(triple, num_list)
[3, 6, 9, 12, 15, 18, 21, 24]

>>> def add_three(x, y, z): # Map a function with multiple inputs.
... return x+y+z
...
>>> x_list = [1, 2, 3, 4]
>>> y_list = [2, 3, 4, 5]
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>>> z_list = [3, 4, 5, 6]
>>> dview.map(add_three, x_list, y_list, z_list)
[6, 9, 12, 15]

Blocking vs. Non-Blocking
Parallel commands can be implemented two ways. The difference is subtle but extremely important.

• Blocking : The main program sends tasks to the controller, and then waits for all of the engines
to finish their tasks before continuing (the controller "blocks" the program’s execution). This
mode is usually best for problems in which each node is performing the same task.

• Non-Blocking : The main program sends tasks to the controller, and then continues without
waiting for responses. Instead of the results, functions return an AsyncResult object that can
be used to check the execution status and eventually retrieve the actual result.

Whether a function uses blocking is determined by default by the block attribute of the
DirectView The execution methods execute(), apply(), and map(), as well as push(), pull(),
scatter(), and gather(), each have a keyword argument block that can instead be used to
specify whether or not to using blocking. Alternatively, the methods apply_sync() and
map_sync() always use blocking, and apply_async() and map_async() always use non-blocking.

>>> f = lambda n: np.sum(np.random.random(n))

# Evaluate f(n) for n=0,1,...,999 with blocking.
>>> %time block_results = [dview.apply_sync(f, n) for n in range(1000)]
CPU times: user 9.64 s, sys: 879 ms, total: 10.5 s
Wall time: 13.9 s

# Evaluate f(n) for n=0,1,...,999 with non-blocking.
>>> %time responses = [dview.apply_async(f, n) for n in range(1000)]
CPU times: user 4.19 s, sys: 294 ms, total: 4.48 s
Wall time: 7.08 s

# The non-blocking method is faster, but we still need to get its results.
# Both methods produced a list, although the contents are different
>>> block_results[10] # This list holds actual result values from each engine.
[3.833061790352166,
4.8943956129713335,
4.268791758626886,
4.73533677711277]

>>> responses[10] # This list holds AsyncResult objects.
<AsyncResult: <lambda>:finished>
# We can get the actual results by using the get() method of each AsyncResult
>>> %time nonblock_results = [r.get() for r in responses]
CPU times: user 3.52 ms, sys: 11 mms, total: 3.53 ms
Wall time: 3.54 ms # Getting the responses takes little time.



190 Lab 15. Intro to Parallel Computing

>>> nonblock_results[10] # This list also holds actual result values
[5.652608204341693,
4.984164642641558,
4.686288406810953,
5.275735658763963]

When non-blocking is used, commands can be continuously sent to engines before they have
finished their previous task. This allows them to begin their next task without waiting to send their
calculated answer and receive a new command. However, this requires a design that incorporates
checkpoints to retrieve answers and enough memory to store response objects.

Class Method Description
wait(timeout) Wait until the result is available or until timeout seconds pass.
ready() Return whether the call has completed.
successful() Return whether the call completed without raising an exception.

Will raise AssertionError if the result is not ready.
get(timeout) Return the result when it arrives. If timeout is not None and the

result does not arrive within timeout seconds then TimeoutError
is raised.

Table 15.1: All information from https://ipyparallel.readthedocs.io/en/latest/details.
html#AsyncResult.

Table 15.1 details the methods of the AsyncResult object.
There are additional magic methods supplied by iPyParallel that make some of these operations
easier. These methods are explained in the Additional Material section. More information on
iPyParallel architecture, interface, and methods can also be found at
https://ipyparallel.readthedocs.io/en/latest/index.html.

Problem 3. Write a function that accepts an integer n. Instruct each engine to make n draws
from the standard normal distribution, then hand back the mean, minimum, and maximum
draws to the client. Return the results in three lists.
If you have four engines running, your results should resemble the following:

>>> means, mins, maxs = problem3(1000000)
>>> means
[0.0031776784, -0.0058112042, 0.0012574772, -0.0059655951]
>>> mins
[-4.1508589, -4.3848019, -4.1313324, -4.2826519]
>>> maxs
[4.0388107, 4.3664958, 4.2060184, 4.3391623]

Problem 4. Use your function from Problem 3 to compare serial and parallel execution times.
For n = 1000000, 5000000, 10000000, 15000000,

https://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult
https://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult
https://ipyparallel.readthedocs.io/en/latest/index.html


191

1. Time how long it takes to run your function.

2. Time how long it takes to do the same process serially. Make n draws and then calculate
and record the statistics, but use a for loop with N iterations, where N is the number
of engines running.

Plot the execution times against n. You should notice an increase in efficiency in the parallel
version as the problem size increases.

Applications
Parallel computing, when used correctly, is one of the best ways to speed up the run time of an
algorithm. As a result, it is very commonly used today and has many applications, such as the
following:

• Graphic rendering

• Facial recognition with large databases

• Numerical integration

• Calculating discrete Fourier transforms

• Simulation of various natural processes (weather, genetics, etc.)

• Natural language processing

In fact, there are many problems that are only feasible to solve through parallel computing because
solving them serially would take too long. With some of these problems, even the parallel solution
could take years. Some brute-force algorithms, like those used to crack simple encryptions, are
examples of this type of problem.
The problems mentioned above are well suited to parallel computing because they can be
manipulated in such a way that running them on multiple processors results in a significant run
time improvement. Manipulating an algorithm to be run with parallel computing is called
parallelizing the algorithm. When a problem only requires very minor manipulations to parallelize,
it is often called embarrassingly parallel. Typically, an algorithm is embarrassingly parallel when
there is little to no dependency between results. Algorithms that do not meet this criteria can still
be parallelized, but there is not always a significant enough improvement in run time to make it
worthwhile. For example, calculating the Fibonacci sequence using the usual formula, F(n) =
F(n− 1) + F(n− 2), is poorly suited to parallel computing because each element of the sequence is
dependent on the previous two elements.

Problem 5. The trapeziod rule is a simple technique for numerical integration:∫ b

a

f(x)dx ≈ h

2

N∑
k=1

(f(xk) + f(xk+1)),

where a = x1 < x2 < . . . < xN = b and h = xn+1 − xn for each n. See Figure 15.2.
Note that estimation of the area of each interval is independent of all other intervals. As a
result, this problem is considered embarrassingly parallel.
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Write a function that accepts a function handle to integrate, bounds of integration, and the
number of points to use for the approximation. Parallelize the trapezoid rule in order to estimate
the integral of f . That is, evenly divide the points among all available processors and run the
trapezoid rule on each portion simultaneously. The sum of the results of all the processors will
be the estimation of the integral over the entire interval of integration. Return this sum.

x1 x2 x3 x4 x5

y

x

y = f(x)

h

Figure 15.2: A depiction of the trapezoid rule with uniform partitioning.

Intercommunication
The phrase parallel computing refers to designing an architecture and code that makes the best use
of computing resources for a problem. Occasionally, this will require nodes to be interdependent on
each other for previous results. This contributes to a slower result because it requires a great deal
of communication latency, but is sometimes the only method to parallelize a function. Although
important, the ability to effectively communicate between engines has not been added to
iPyParallel. It is, however, possible in an MPI framework and will be covered in the MPI lab.
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Additional Material
Clusters of Multiple Machines
Though setting up a computing cluster with iPyParallel on multiple machines is similar to a
cluster on a single computer, there are a couple of extra considerations to make. The majority of
these considerations have to do with the network setup of your machines, which is unique to each
situation. However, some basic steps have been taken from
https://ipyparallel.readthedocs.io/en/latest/process.html and are outlined below.

SSH Connection

When using engines and controllers that are on separate machines, their communication will most
likely be using an SSH tunnel. This Secure Shell allows messages to be passed over the network.
In order to enable this, an SSH user and IP address must be established when starting the
controller. An example of this follows.

$ ipcontroller --ip=<controller IP> --user=<user of controller> --enginessh=<←↩
user of controller>@<controller IP>

Engines started on remote machines then follow a similar format.

$ ipengine --location=<controller IP> --ssh=<user of controller>@<controller IP←↩
>

Another way of affecting this is to alter the configuration file in
UserDirectory/.ipython/profile-default/security/ipcontroller-engine.json. This can
be modified to contain the controller IP address and SSH information.
All of this is dependent on the network feasibility of SSH connections. If there are a great deal of
remote engines, this method will also require the SSH password to be entered many times. In order
to avoid this, the use of SSH Keys from computer to computer is recommended.

Magic Methods & Decorators
To be more easily usable, the iPyParallel module has incorporated a few magic methods and
decorators for use in an interactive iPython or Python terminal.

Magic Methods

The iPyParallel module has a few magic methods that are very useful for quick commands in
iPython or in a Jupyter Notebook. The most important are as follows. Additional methods are
found at https://ipyparallel.readthedocs.io/en/latest/magics.html.

%px - This magic method runs the corresponding Python command on the engines specified
in dview.targets.

%autopx - This magic method enables a boolean that runs any code run on every engine
until %autopx is run again.

Examples of these magic methods with a client and four engines are as follows.

https://ipyparallel.readthedocs.io/en/latest/process.html
https://ipyparallel.readthedocs.io/en/latest/magics.html


194 Lab 15. Intro to Parallel Computing

# %px
In [4]: with dview.sync_imports():

...: import numpy

...:
importing numpy on engine(s)
In [5]: \%px a = numpy.random.random(2)

In [6]: dview['a']
Out[6]:
[array([ 0.30390162, 0.14667075]),
array([ 0.95797678, 0.59487915]),
array([ 0.20123566, 0.57919846]),
array([ 0.87991814, 0.31579495])]

# %autopx
In [7]: %autopx
%autopx enabled
In [8]: max_draw = numpy.max(a)

In [9]: print('Max_Draw: {}'.format(max_draw))
[stdout:0] Max_Draw: 0.30390161663280246
[stdout:1] Max_Draw: 0.957976784975849
[stdout:2] Max_Draw: 0.5791984571339429
[stdout:3] Max_Draw: 0.8799181411958089

In [10]: %autopx
%autopx disabled

Decorators

The iPyParallel module also has a few decorators that are very useful for quick commands. The
two most important are as follows:

@remote - This decorator creates methods on the remote engines.

@parallel - This decorator creates methods on remote engines that break up element wise
operations and recombine results.

Examples of these decorators are as follows.

# Remote decorator
>>> @dview.remote(block=True)
>>> def plusone():
... return a+1
>>> dview['a'] = 5
>>> plusone()
[6, 6, 6, 6,]
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# Parallel decorator
>>> import numpy as np

>>> @dview.parallel(block=True)
>>> def combine(A,B):
... return A+B
>>> ex1 = np.random.random((3,3))
>>> ex2 = np.random.random((3,3))
>>> print(ex1+ex2)
[[ 0.87361929 1.41110357 0.77616724]
[ 1.32206426 1.48864976 1.07324298]
[ 0.6510846 0.45323311 0.71139272]]
>>> print(combine(ex1,ex2))
[[ 0.87361929 1.41110357 0.77616724]
[ 1.32206426 1.48864976 1.07324298]
[ 0.6510846 0.45323311 0.71139272]]
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