
13 Data Cleaning

Lab Objective: The quality of a data analysis or model is limited by the quality of the data used.
In this lab we learn techniques for cleaning data, creating features, and determining feature
importance.

Almost every dataset has problems that make it unsuitable for regression or other modeling. Some
problems will throw errors in your code and so will be easily observed. Other data problems are less
noticeable. If code executes on poorly maintained data, the results could vary significantly from the
true results which might have been obtained if the underlying dataset were better prepared.
Data cleaning is the process of identifying and correcting bad data. This could be data that is
missing, duplicated, irrelevant, inconsistent, incorrect, in the wrong format, or otherwise does not
make sense. Though it can be tedious, data cleaning is the most important step of data analysis.
Without accurate and legitimate data, any results or conclusions are suspect and may be incorrect.
We will demonstrate common issues with data and how to correct them using the following dataset.
It consists of family members and some basic details.

Example dataset
>>> df = pd.read_csv('toy_dataset.csv')

>>>
Name Age name DOB Marital_Status

0 John Doe 30 john 01/01/2010 Divorcee
1 Jane Doe 29 jane 12/02/1990 Divorced
2 Jill smith 40 NaN 03/04/1980 married
3 Jill smith 40 jill 03/04/1980 married
4 jack smith 100 jack 4/4/1980 marrieed
5 Jenny Smith 5 NaN 05/05/2015 NaN
6 JAmes Smith 2 NaN 20/06/2018 single
7 Rover 2 NaN 05/05/2018 NaN

Height Weight Marriage_Len Spouse
0 72.0 175 5 NaN
1 5.5 125 5 John Doe

159

160 Lab 13. Data Cleaning

2 64.0 120 10 Jack Smith
3 64.0 120 NaN jack smith
4 1.8 220 10 jill smith
5 105.0 40 NaN NaN
6 27.0 25 Not Applicable NaN
7 36.0 50 NaN NaN

Inspection
The first step of data cleaning is to analyze the quality of the data. If the quality is poor, the data
might not be worth using. Knowing the quality of the data will also give you an idea of how long it
will take to clean it. A quality dataset is one in which the data is valid, accurate, complete,
consistent, and uniform. Some of these issues, like uniformity, are fairly easy to fix during cleaning,
while other aspects like accuracy are more difficult, if not impossible, to address.
Validity is the degree that the data conforms to given rules. If a column corresponds to the
temperature in Salt Lake City, measured in degrees Farenheit, then a value over 110 or below 0

should make you suspicious, since those would be extreme values for Salt Lake City. In fact,
checking the all-time temperature records for Salt Lake shows that the values in this column should
never be more than 107 and never less than −30. Any values outside that range are almost
certainly errors and should probably be reset to NaN , unless you have special information that
allows you to impute more accurate values.
Some standard considerations when determining the validity of a dataset are:

• data type: The data types of each column should all be the same.

• data range: The data of a column, typically numbers or dates, should all be within some
valid range.

• mandatory constraints: Certain columns cannot have missing entries.

• unique constraint: Entries in certain columns must be unique.

• regular expression patterns: A text column must be in the same format (for example,
forcing phone numbers to be formatted as 999-999-9999).

• cross-field validation: Conditions must hold across multiple columns (for example, a
hospital discharge date can’t be earlier than the admittance date).

• duplicated data: Rows or columns that are repeated. In some cases, they may not be exact.

We can check the data type in Pandas using dtype. A dytpe of object means that the data in
that column contains either strings or mixed dtypes. These fields should be investigated to
determine if they contain mixed datatypes. In our toy example, we would expect that
Marriage_Len is numerical, so an object dtype is suspicious. Looking at the data, we see that
James has Not Applicable, which is a string.

Check validity of data
Check Data Types
>>> df.dtypes
Name object

161

Age int64
name object
DOB object
Marital_Status object
Height float64
Weight int64
Marriage_Len object
Spouse object
dtype: object

Duplicates
Duplicates can be easily identified in Pandas using the duplicated() function. When no
parameters are passed, it returns a DataFrame of the first duplicates. We can identify rows that are
duplicated in only some columns by passing in the column names. The keep parameter has three
possible values, first, last, and False. False keeps all duplicated values, while first and last keep only
the first and last instances, respectively.

Display duplicated rows
>>> df[df.duplicated()]
Empty DataFrame
Columns: [Name, Age, name, DOB, Marital_Status, Height, Weight, Marriage_Len, ←↩

Spouse]
Index: []

Display rows that have duplicates in some columns
>>> df[df.duplicated(['Name','DOB','Marital_Status'],keep=False)]

Name Age name DOB Marital_Status Height Weight ←↩
Marriage_Len Spouse

2 Jill smith 40 NaN 03/04/1980 married 64.0 120 ←↩
10 Jack Smith

3 Jill smith 40 jill 03/04/1980 married 64.0 120 ←↩
NaN jack smith

Range
We can check the range of values in a numeric column using the min and max attributes. Other
options for looking at the values include line plots, histograms, and boxplots. Some other useful
Pandas commands for evaluating the breadth of a dataset include df.nunique() (which returns a
series giving the name of each column and the number of unique values in each column),
pd.unique() (which returns an array of the unique values in a series), and value_counts() (which
counts the number of instances of each unique value in a column, like a histogram).

Count the number of unique values in each row
>>> df.nunique()
Name 7
Age 6

162 Lab 13. Data Cleaning

name 2
DOB 7
Marital_Status 5
Height 7
Weight 7
Marriage_Len 4
Spouse 4
dtype: int64

Print the unique Marital_Status values
>>> pd.unique(df['Marital_Status'])
array(['Divorcee', 'Divorced', 'married', 'marrieed', nan, 'single'],

dtype=object)

Count the number of each Marital_Status values
>>> df['Marital_Status'].value_counts()
married 2
single 1
marrieed 1
Divorcee 1
Divorced 1
Name: Marital_Status, dtype: int64

Accuracy
The accuracy of the data, how close the data is to reality, is harder to confirm. Just because a data
point is valid, doesn’t mean that it is true. For example, a valid street address doesn’t have to
exist, or a person might lie about their weight. The first case could be checked using mapping
software, but the second could be unverifiable.

Missing Data
The percentage of missing data is the completeness of the data. All uncleaned data will have
missing values, but datasets with large amounts of missing data, or lots of missing data in key
columns, are not going to be as useful. Pandas has several functions to help identify and count
missing values. In Pandas, all missing data is considered a NaN and does not affect the dtype of a
column. df.isna() returns a boolean DataFrame indicating whether each value is missing.
df.notnull() returns a boolean DataFrame with True where a value is not missing.

Count number of missing data points in each column
>>> df.isna().sum()
Name 0
Age 0
name 6
DOB 0
Marital_Status 2

163

Height 0
Weight 0
Marriage_Len 2
Spouse 4
dtype: int64

Consistency
Consistency measures how cohesive the data is, both within the dataset and across multiple
datasets. For example, in our toy dataset Jack Smith is 100 years old, but his birth year is 1980.
Data is inconsistent across datasets when the data points should be the same and are different.
This could be due to incorrect entries or syntax errors.

Uniformity
Lastly, uniformity is the measure of how similarly the data is formatted. Data that has the same
units of measure and syntax are considered uniform. Looking at the Height column in our dataset,
we see values ranging from 1.8 to 105. This is likely the result of different units of measure.
Uniformity also matters accross multiple datasets. For example, if you use multiple finance datasets
to build a predictive model then the dates in each dataset should have the same format so that
they can all be used equally in the model.

No Set Rules
When looking at the quality of the data, there are no set rules on how to measure these concepts or
at what point the data is considered bad data. Sometimes the only data available is of poor quality
and so must still be used. Other times, higher quality data may be available elsewhere. An idea of
the quality of the data will inform you of which cleaning steps are needed and will influence the
strength of your final analysis.
You should always investigate the quality of the dataset they wish to use because a model is only as
good as the data it relies on. Such an investigation should include statistics summarizing the
principles discussed in this section, visualizations to identify outliers in the data, and written
descriptions of the mitigating steps taken to improve the data set. Using various data visualizations
can also give one a general sense of the quality of their data. Using histograms, box plots, and
hexbins can identify outliers in the data. Outliers should be investigated to determine if they are
accurate. Removing outliers will improve your model, but you should only remove an outlier if you
have a legitimate reason. Columns that have a small distribution or variance, or consist of one
value, could be worth removing since they might contribute little to the model.

Problem 1. The g_t_results.csv file is a set of parent-reported scores on their child’s Gifted
and Talented tests. The two tests, OLSAT and NNAT, are used by NYC to determine if children
are qualified for gifted programs. The OLSAT Verbal has 16 questions for Kindergartners and
30 questions for first, second, and third graders. The NNAT has 48 questions. Using this
dataset, answer the following questions.

164 Lab 13. Data Cleaning

1. What column has the highest number of null values and what percent of its values are
null? Print the answer as a tuple with (column name, percentage). Make sure the second
value is a percent.

2. List the columns that should be numeric that aren’t. Print the answer as a tuple.

3. How many third graders have scores outside the valid range for the OLSAT Verbal Score?
Print the answer

4. How many data values are missing (NaN)? Print the number.

Each part is one point.

Cleaning

After the data has been inspected, it’s time to start cleaning. There are many aspects and methods
of cleaning; not all of them will be used in every dataset. Which ones you choose should be based
on your dataset and the goal of the project.

Unwanted Data

Removing unwanted data typically falls into two categories, duplicated data and irrelevant data.
Duplicated observations usually occur when data is scraped, combined from multiple datasets, or
submitted twice by a user. Irrelevant data consists of observations that don’t fit the specific
problem you are trying to solve or don’t have enough variation to affect the model. We can drop
duplicated data using the duplicated() function described above with drop() or using
drop_duplicates, which has the same parameters as duplicated.

Validity Errors

After removing unwanted data, we correct any validity errors found during inspection. All features
should have a consistent type, standard formatting (like capitalization), and the same units. Syntax
errors should be fixed, and white space at the beginning and ends of strings should be removed.
Some data might need to be padded so that it’s all the same length.

Method Description
series.str.lower() Convert to all lower case
series.str.upper() Convert to all upper case
series.str.strip() Remove all leading and trailing white space
series.str.lstrip() Remove leading white space

series.str.replace(" ","") Remove all spaces
series.str.pad() Pad strings

Table 13.1: Pandas String Formatting Methods

Validity also includes correcting or removing contradicting values. This might be two values in a
row or values across datasets. For example, a child shouldn’t have a marital status of married. Or,
if two columns should sum to a third but don’t, then your data has invalid values which may need
to be removed.

165

Missing Data

There will always be missing data in any uncleaned dataset. Some commonly suggested methods
for handling data are removing the missing data and setting the missing values to some value based
on other observations. However, missing data can be informative and removing or replacing missing
data erases that information. Removing missing values from a dataset might result in losing
significant amounts of data or even in a less accurate model. Retaining the missing values can help
increase accuracy.
We have several options to deal with missing data:

• Dropping missing data is the easiest method. Dropping rows should only be done if the are a
small number of missing data points in a column or if the row is missing a significant amount
of data. If a column is very sparse, consider dropping the entire column. If dropping missing
data is inappropriate, you may instead choose to estimate the missing values. There are many
ways to do this including mean, mode, median, randomly choosing from a distribution, linear
regression, and hot-decking, to name a few.

• Hot-decking is when you fill in the data based on similar observations. It can be applied to
numerical and categorical data, unlike most of the other options listed above. Sequential
hot-decking sorts the column with missing data based on an auxiliary column and then fills in
the data with the value from the next available data point. K-Nearest Neighbors can also be
used to identify similar data points.

• The last option is to flag the data as missing. This retains the information from missing data
and removes the missing data (by replacing it). For categorical data, simply replace the data
with a new category. For numerical data, we can fill the missing data with 0, or some value
that makes sense, and add an indicator variable for missing data.

Replace missing data
import numpy as np

Add an indicator column based on missing Marriage_Len
>>> df['missing_ML'] =df['Marriage_Len'].isna()

Fill in all missing data with 0
>>> df['Marriage_Len'] = df['Marriage_Len'].fillna(0)

Change all other NaNs to missing
>>> df = df.fillna('missing')

Change Not Applicable row to NaNs
>>> df = df.replace('Not Applicable',np.nan)

Drop rows will NaNs
>>> df = df.dropna()

>>> df
Name Age DOB Marital_Status

0 JOHN DOE 30 01/01/2010 divorcee

166 Lab 13. Data Cleaning

1 JANE DOE 29 12/02/1990 divorced
2 JILL SMITH 40 03/04/1980 married
3 JACK SMITH 40 4/4/1980 married
4 JENNY SMITH 5 05/05/2015 missing

Height Weight Marriage_Len Spouse missing_ML
0 72.0 175 5 missing False
1 68.0 125 5 John Doe False
2 64.0 120 10 Jack Smith False
3 71.0 220 10 jill smith False
4 41.0 40 0 missing True

Nonnumerical Values Misencoded as Numbers

Recording data as a numerical data type (float or int) when no numerical meaning applies to the
situation causes errors which can be extremely difficult to debug. Some data should be recorded in
data types that cannot be multiplied or summed.

Missing data should always be stored in a form that cannot accidentally be incorporated into the
model. Typically this is done by storing missing values as NaN . However, some algorithms will not
run on data with NaN values, in which case you may choose to fill missing data with a string
'missing'. Unfortunately, many datasets have recorded missing values with a 0 or some other
number. You should verify that this does not occur in your dataset. Similarly, a survey with a scale
from 1 to 5 will sometimes have the additional choice of “N/A” (meaning “not applicable”), which
could be coded as 6, not because the value 6 is meaningful, but just because that is the next thing
after 5. Again, this should be fixed so that the “N/A” choice cannot accidentally be used for any
computations.

Categorical data are also often encoded as numerical values. These values should not be left as
numbers that can be computed with. For example, postal codes are shorthand for locations, and
there is no numerical meaning to the code. It makes no sense to add, subtract, or multiply postal
codes, so it is important not to let those accidentally be added, subtracted, or multiplied, for
example by inadvertently including them in the design matrix (unless they are one-hot encoded or
given some other meaningful numerical value). It is good practice to convert postal codes, area
codes, ID numbers, and other non-numeric data into strings or other data types that cannot be
computed with.

167

Ordinal Data

Ordinal data is data that has a meaningful order but the differences between the values aren’t
consistent, or maybe aren’t even meaningful at all. For example, a survey question might ask about
your level of education, with 1 being high-school graduate, 2 bachelor’s degree, 3 master’s degree,
and 4 doctoral degree. These values are called ordinal data because it is meaningful to talk about
an answer of 1 being less than an answer of 2. However, the difference between 1 and 2 is not
necessarily the same as the difference between 3 and 4, and it would not make sense to compute an
average answer—the average of a high school diploma and a masters degree is not a bachelor’s
degree, despite the fact that the average of 1 and 3 is 2. Treating these like categorical data loses
the information of the ordering, but treating it like regular numerical data implies that a difference
of 2 has the same meaning whether it comes as 3− 1 or 4− 2. If that difference of 2 has
approximately the same meaning, then it may be ok to treat these data as numerical in your model,
but if that assumption is not correct then it may be better to treat the variable as categorical.

Problem 2. imdb.csv contains a small set of information about 99 movies. Clean the data
set by doing the following in order:

1. Remove duplicate rows by dropping the first or last. Print the shape of the dataframe
after removing the rows.

2. Drop all rows that contain missing data. Print the shape of the dataframe after removing
the rows.

3. Remove rows that have data outside valid data ranges and explain briefly how you deter-
mined your ranges for each column.

4. Identify and drop columns with three or fewer different values. Print a tuple with the
names of the columns dropped.

5. Convert the titles to all lower case.

Print the first five rows of your dataframe.

Feature Engineering
One often needs to construct new columns, commonly referred to as features in the context of
machines learning, for a dataset, because the dependent variable is not necessarily a linear function
of the features in the original dataset. Constructing new features is called feature engineering. Once
new features are created, we can analyze how much a model depends on each feature. Features with
low importance probably do not contributed much and could potentially be removed.

Fognets are fine mesh nets that collect water that condenses on the netting. These are used in some
desert cities in Morocco to produce drinking water. Consider a dataset measuring the amount of
water Y collected from fognets, where one of the features WindDir is the wind direction, measured
in degrees. This feature is not likely to contribute meaningfully in a linear model because the
direction 359 is almost the same as the direction 0, but no nonzero linear multiple of WindDir will
reflect this relation. One way to improve the situation is to replace the WindDir with two new
(engineered) features: sin

(
π

180WindDir
)
and cos

(
π

180WindDir
)
.

168 Lab 13. Data Cleaning

Discrete Fourier transforms and wavelet decomposition often reveal important properties of data
collected over time (called time-series), like sound, video, economic indicators, etc. In many such
settings it is useful to engineer new features from a wavelet decomposition, the DFT, or some other
function of the data.

Problem 3. basketball.csv contains data for all NBA players between 2001 and 2018. Each
row represents a player’s stats for a year. The features in this data set are

• player (str): the player’s name

• age (int): the player’s age

• team_id (cat): the player’s team

• per (float): player efficiency rating, how much a player produced in one minute of play

• ws (float): win shares, an estimate of how much the player contributed to

• bpm (float): box plus/minus is the estimated number of points a player contributed to
over 100 possessions

• year (int): the year

(float):
Create two new features:

• career_length (int): number of years player has been playing (start at 0).

• target (str): The target team if the player is leaving. If the player is retiring, the target
should be ’retires’. A player is retiring if their name doesn’t exist the next year. (Set the
players in 2019 to NaN).

Remove all duplicates of a player in each year. Remove all rows except those where a player
changes team, that is, target is not null nor ’retires’. Drop the player, year, and team_id
columns.
Return the first ten lines of the dataframe.

Engineering for Categorical Variables

Categorical features are those that take only a finite number of values, and usually no categorical
value has a numerical meaning, even if it happens to be number. For example in an election
dataset, the names of the candidates in the race are categorical, and there is no numerical meaning
(neither ordering nor size) to numbers assigned to candidates based soley on their names.

Consider the following election data.

169

Ballot number For Governor For President
001 Herbert Romney
002 Cooke Romney
003 Cooke Obama
004 Herbert Romney
005 Herbert Romney
006 Cooke Stein

A common mistake occurs when someone assigns a number to each categorical entry (say 1 for
Cooke, 2 for Herbert, 3 for Romney, etc.). While this assignment is not, in itself, inherently
incorrect, it is incorrect to use the value of this number in a statistical model. Any such model
would be fundamentally wrong because a vote for Cooke cannot, in any reasonable way, be
considered half of a vote for Herbert or a third of a vote for Romney. Many researchers have
accidentally used categorical data in this way (and some have been very publicly embarrassed)
because their categorical data was encoded numerically, which made it hard to recognize as
categorical data.
Whenever you encounter categorical data that is encoded numerically like this, immediately change
it either to non-numerical form (“Cooke,” “Herbert,” “Romney,”. . .) or apply a one-hot encoding as
described below.
In order to construct a meaningful model with categorical data, one normally applies a one-hot
encoding or dummy variable encoding. 1 To do this construct a new feature for every possible value
of the categorical variable, and assign the value 1 to that feature if the variable takes that value and
zero otherwise. Pandas makes one-hot encoding simple:

one-hot encoding
df = pd.get_dummies(df, columns=['For President']])

The previous dataset, when the presidential race is one-hot encoded, becomes

Ballot number Governor Romney Obama Stein
001 Herbert 1 0 0
002 Cooke 1 0 0
003 Cooke 0 1 0
004 Herbert 1 0 0
005 Herbert 1 0 0
006 Cooke 0 0 1

Note that the sum of the terms of the one-hot encoding in each row is 1, corresponding to the fact
that every ballot had exactly one presidential candidate.
When the gubernatorial race is also one-hot encoded, this becomes

Ballot number Cooke Herbert Romney Obama Stein
001 0 1 1 0 0
002 1 0 1 0 0
003 1 0 0 1 0
004 0 1 1 0 0
005 0 1 1 0 0
006 1 0 0 0 1

1Yes, these are silly names, but they are the most common names for it. Unfortunately, it is probably too late to
change these now.

170 Lab 13. Data Cleaning

Now the sum of the terms of the one-hot encodings in each row is 2, corresponding to the fact that
every ballot had two names—one gubernatorial candidate and one presidential candidate.
Summing the columns of the one-hot-encoded data gives the total number of votes for the
candidate of that column. So the numerical values in the one-hot encodings are actually
numerically meaningful, and summing the entries gives meaningful information. One-hot encoding
also avoids the pitfalls of incorrectly using numerical proxies for categorical data.
The main disadvantage of one-hot encoding is that it is an inefficient representation of the data. If
there are C categories and n datapoints, a one-hot encoding takes an n× 1-dimensional feature and
turns it into an n× C sparse matrix. But there are ways to store these data efficiently and still
maintain the benefits of the one-hot encoding.

Achtung!

When performing linear regression, it is good practice to add a constant column to your dataset
and to remove one column of the one-hot encoding of each categorical variable. (Adding a
constant column should only be done in linear regression).
To see why, notice that summing terms in one row corresponding to the one-hot encoding of
a specific categorical variable (for example the presidential candidate) always gives 1. If the
dataset already has a constant column (which you really always should add if it isn’t there
already), then the constant column is a linear combination of the one-hot encoded columns.
This cause the matrix to fail to be invertible and can cause identifiability problems.
The standard way to deal with this is to remove one column of the one-hot embedding for each
categorical variable. For example, with the elections dataset above, we could remove the Cooke
and Romney columns. Doing that means that in the new dataset a row sum of 0 corresponds
to a ballot with a vote for Cooke and a vote for Romney, while a 1 in any column indicates how
the ballot differed from the base choice of Cooke and Romney.
When using pandas, you can drop the first column of a one-hot encoding by passing in
drop_first=True.

Problem 4. Load housing.csv into a dataframe with index=0. Descriptions of the features
are in housing_data_description.txt. The goal is to construct a regression model that
predicts SalePrice using the other features of the dataset. Do this as follows:

1. Identify and handle the missing data. Hint: Dropping every row with some missing data
is not a good choice because it gives you an empty dataframe. What can you do instead?

2. Identify the variable with nonnumerical values that are misencoded as numbers. One-hot
encode it. Hint: don’t forget to remove one of the encoded columns to prevent collinearity
with the constant column).

3. Add a constant column to the dataframe.

4. Save a copy of the dataframe.

5. Choose four categorical features that seem very important in predicting SalePrice. One-
hot encode these features, and remove all other categorical features.

171

6. Run an OLS regression on your model.

Print the ten features that have the highest coefficient in your model and the summary.
To run an OLS model in python, use the following code.

import statsmodels.api as sm

>>> results = sm.OLS(y, X).fit()

Print the summary
>>> results.summary()

Convert the summary table to a dataframe
>>> results_as_html = a.tables[1].as_html()
>>> result_df = pd.read_html(results_as_html, header=0, index_col=0)[0]

Problem 5. Using the copy of the dataframe you created in Problem 4, one-hot encode all the
categorical variables. Print the shape of you database, and Run OLS.
Print the ten features that have the highest coefficient in your model and the summary. Write
a couple of sentences discussing which model is better and why.

	to 20ptILabs
	Data Cleaning

