
4 Numerical Methods
for Initial Value
Problems; Harmonic
Oscillators

Lab Objective: Implement several basic numerical methods for initial value problems (IVPs) and
use them to study harmonic oscillators.

Methods for Initial Value Problems
Consider the initial value problem (IVP)

x′(t) = f(x(t), t), t0 ≤ t ≤ tf
x(t0) = x0,

(4.1)

where f is a suitably continuous function. A solution of (4.1) is a continuously differentiable, and
possibly vector-valued, function x(t) = [x1(t), . . . , xm(t)]

T, whose derivative x′(t) equals f(x(t), t)

for all t ∈ [t0, tf ], and for which the initial value x(t0) equals x0.

Under the right conditions, namely that f is uniformly Lipschitz continuous in x(t) near x0

and continuous in t near t0, (4.1) is well-known to have a unique solution. However, for many IVPs,
it is difficult, if not impossible, to find a closed-form, analytic expression for x(t). In these cases,
numerical methods can be used to instead approximate x(t).

As an example, consider the initial value problem

x′(t) = sin(x(t)),

x(0) = x0.
(4.2)

The solution x(t) is defined implicitly by

t = ln

∣∣∣∣ cos(x0) + cot(x0)

csc(x(t)) + cot(x(t))

∣∣∣∣ .
This equation cannot be solved for x(t), so it is difficult to understand what solutions to (4.2) look
like. Since sin(nπ) = 0, there are constant solutions xn(t) = nπ, n ∈ Z. Using a numerical IVP
solver, solutions for different values of x0 can be approximated. Figure 4.1 shows several of these
approximate solutions, along with some of the constant, or equilibrium, solutions.
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Figure 4.1: Several solutions of (4.2), using scipy.integrate.odeint.

Numerical Methods
For the numerical methods that follow, the key idea is to seek an approximation for the values of
x(t) only on a finite set of values t0 < t1 < . . . < tn−1 < tn (= tf ). In other words, these methods
try to solve for x1,x2, . . . ,xn such that xi ≈ x(ti).

Euler’s Method
For simplicity, assume that each of the n subintervals [ti−1, ti] has equal length h = (tf − t0)/n. h is
called the step size. Assuming x(t) is twice-differentiable, for each component function xj(t) of x(t)

and for each i, Taylor’s Theorem says that

xj(ti+1) = xj(ti) + hx′j(ti) +
h2

2
x′′j (c) for some c ∈ [ti, ti+1].

The quantity h2

2 x
′′
j (c) is negligible when h is sufficiently small, and thus xj(ti+1) ≈ xj(ti) + hx′j(ti).

Therefore, bringing the component functions of x(t) back together gives

x(ti+1) ≈ x(ti) + hx′(ti),

≈ x(ti) + hf(x(ti), ti).

This approximation leads to the Euler method : Starting with x0 = x(t0), xi+1 = xi + hf(xi, ti)

for i = 0, 1, . . . , n − 1. Euler’s method can be understood as starting with the point at x0, then
calculating the derivative of x(t) at t0 using f(x0, t0), followed by taking a step in the direction of
the derivative scaled by h. Set that new point as x1 and continue.



37

It is important to consider how the choice of step size h affects the accuracy of the approxima-
tion. Note that at each step of the algorithm, the local truncation error, which comes from neglecting
the x′′j (c) term in the Taylor expansion, is proportional to h2. The error ||x(ti)− xi|| at the ith step
comes from i = ti−t0

h steps, which is proportional to h−1, each contributing h2 error. Thus the global
truncation error is proportional to h. Therefore, the Euler method is called a first-order method, or
a O(h) method. This means that as h gets small, the approximation of x(t) improves in two ways.
First, x(t) is approximated at more values of t (more information about the solution), and second,
the accuracy of the approximation at any ti is improved proportional to h (better information about
the solution).
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Figure 4.2: The solution of (4.3), alongside several approximations using Euler’s method.

Problem 1. Write a function which implements Euler’s method for an IVP of the form (4.1).
Test your function on the IVP:

x′(t) = x(t)− 2t+ 4, 0 ≤ t ≤ 2,

x(0) = 0,
(4.3)
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where the analytic solution is x(t) = −2 + 2t + 2et. Use the Euler method to numerically
approximate the solution with step sizes h = 0.2, 0.1, and 0.05. Plot the true solution alongside
the three approximations, and compare your results with Figure 4.2.

Midpoint Method
The midpoint method is very similar to Euler’s method. For small h, use the approximation

x(ti+1) ≈ x(ti) + hf(x(ti) +
h

2
f(x(ti), ti), ti +

h

2
, ).

In this approximation, first set x̂i = xi + h
2 f(xi, ti), which is an Euler method step of size h/2.

Then evaluate f(x̂i, ti + h
2 ), which is a more accurate approximation to the derivative x′(t) in the

interval [ti, ti+1]. Finally, a step is taken in that direction, scaled by h. It can be shown that the
local truncation error for the midpoint method is O(h3), giving global truncation error of O(h2).
This is a significant improvement over the Euler method. However, it comes at the cost of additional
evaluations of f and a handful of extra floating point operations on the side. This tradeoff will be
considered later in the lab.

Runge-Kutta Methods
The Euler method and the midpoint method belong to a family called Runge-Kutta methods. There
are many Runge-Kutta methods with varying orders of accuracy. Methods of order four or higher
are most commonly used. A fourth-order Runge-Kutta method (RK4) iterates as follows:

K1 = f(xi, ti),

K2 = f(xi +
h

2
K1, ti +

h

2
),

K3 = f(xi +
h

2
K2, ti +

h

2
),

K4 = f(xi + hK3, ti+1),

xi+1 = xi +
h

6
(K1 + 2K2 + 2K3 +K4).

Runge-Kutta methods can be understood as a generalization of quadrature methods for approx-
imating integrals, where the integrand is evaluated at specific points, and then the resulting values
are combined in a weighted sum. For example, consider a differential equation

x′(t) = f(t)

Since the function f has no x dependence, this is a simple integration problem. In this case, Euler’s
method corresponds to the left-hand rule, the midpoint method becomes the midpoint rule, and RK4
reduces to Simpson’s rule.

Advantages of Higher-Order Methods
It can be useful to visualize the order of accuracy of a numerical method. A method of order p has
relative error of the form

E(h) = Chp
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taking the logarithm of both sides yields

log(E(h)) = p · log(h) + log(C)

Therefore, on a log-log plot against h, E(h) is a line with slope p and intercept log(C).

Problem 2. Write functions that implement the midpoint and fourth-order Runge-Kutta meth-
ods. Use the Euler, Midpoint, and RK4 methods to approximate the value of the solution for
the IVP (4.3) from Problem 1 for step sizes of h = 0.2, 0.1, 0.05, 0.025, and 0.0125.

Plot the following graphs

• The true solution alongside the approximation obtained from each method when h = 0.2.

• A log-log plot (use plt.loglog) of the relative error |x(2)− xn|/|x(2)| as a function of h
for each approximation.

Compare your second plot with Figure 4.3.
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Figure 4.3: Loglog plot of the relative error in approximating x(2), using step sizes h = 0.2, 0.1, 0.05,

0.025, and 0.0125. The slope of each line demonstrates the first, second, and fourth order convergence
of the Euler, Midpoint, and RK4 methods, respectively.
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The Euler, midpoint, and RK4 methods help illustrate the potential trade-off between order
of accuracy and computational expense. To increase the order of accuracy, more evaluations of f
must be performed at each step. It is possible that this trade-off could make higher-order methods
undesirable, as (in theory) one could use a lower-order method with a smaller step size h. However,
this is not generally the case. Assuming efficiency is measured in terms of the number of f -evaluations
required to reach a certain threshold of accuracy, higher-order methods turn out to be much more
efficient. For example, consider the IVP

x′(t) = x(t) cos(t), t ∈ [0, 8],

x(0) = 1.
(4.4)

Figure 4.4 illustrates the comparative efficiency of the Euler, Midpoint, and RK4 methods applied to
(4.4). The higher-order RK4 method requires fewer f -evaluations to reach the same level of relative
error as the lower-order methods. As h becomes small, which corresponds to increasing functional
evaluations, each method reaches a point where the relative error |x(8)−xn|/|x(8)| stops improving.
This occurs when h is so small that floating point round-off error overwhelms local truncation error.
Notice that the higher-order methods are able to reach a better level of relative error before this
phenomena occurs.
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Figure 4.4: The relative error in computing the solution of (4.4) at x = 8 versus the number of times
the right-hand side of (4.4) must be evaluated.
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Harmonic Oscillators and Resonance
Harmonic oscillators are common in classical mechanics. A few examples include the pendulum (with
small displacement), spring-mass systems, and the flow of electric current through various types of
circuits. A harmonic oscillator y(t)1 is a solution to an initial value problem of the form

my′′ + γy′ + ky = f(t),

y(0) = y0, y′(0) = y′0.

Here, m represents the mass on the end of a spring, γ represents the effect of damping on the motion,
k is the spring constant, and f(t) is the external force applied.

Simple harmonic oscillators
A simple harmonic oscillator is a harmonic oscillator that is not damped, γ = 0, and is free, f = 0,
rather than forced, f 6= 0. A simple harmonic oscillator can described by the IVP

my′′ + ky = 0,

y(0) = y0, y′(0) = y′0.

The solution of this IVP is y = c1 cos(ω0t) + c2 sin(ω0t), where ω0 =
√
k/m is the natural frequency

of the oscillator and c1 and c2 are determined by applying the initial conditions.
To solve this IVP using a Runge-Kutta method, it must be written in the form

x′(t) = f(x(t), t)

This can be done by setting x1 = y and x2 = y′. Then we have

x′ =

[
x1

x2

]′
=

[
x2
−k
m x1

]
Therefore

f(x(t), t) =

[
x2
−k
m x1

]

Problem 3. Use the RK4 method to solve the simple harmonic oscillator satisfying

my′′ + ky = 0, 0 ≤ t ≤ 20,

y(0) = 2, y′(0) = −1,
(4.5)

for m = 1 and k = 1.
Plot your numerical approximation of y(t). Compare this with the numerical approxi-

mation when m = 3 and k = 1. Consider: Why does the difference in solutions make sense
physically?

1It is customary to write y instead of y(t) when it is unambiguous that y denotes the dependent variable.
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Figure 4.5: Solutions of (4.5) for several values of m.

Damped free harmonic oscillators
A damped free harmonic oscillator y(t) satisfies the IVP

my′′ + γy′ + ky = 0,

y(0) = y0, y′(0) = y′0.

The roots of the characteristic equation are

r1, r2 =
−γ ±

√
γ2 − 4km

2m
.

Note that the real parts of r1 and r2 are always negative, and so any solution y(t) will decay over
time due to a dissipation of the system energy. There are several cases to consider for the general
solution of this equation:

1. If γ2 > 4km, then the general solution is y(t) = c1e
r1t + c2e

r2t. Here the system is said to be
overdamped. Notice from the general solution that there is no oscillation in this case.

2. If γ2 = 4km, then the general solution is y(t) = c1e
γt/2m + c2te

γt/2m. Here the system is said
to be critically damped.
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3. If γ2 < 4km, then the general solution is

y(t) = e−γt/2m [c1 cos(µt) + c2 sin(µt)] ,

= Re−γt/2m sin(µt+ δ),

where R and δ are fixed, and µ =
√

4km− γ2/2m. This system does oscillate.

Problem 4. Use the RK4 method to solve for the damped free harmonic oscillator satisfying

y′′ + γy′ + y = 0, 0 ≤ t ≤ 20,

y(0) = 1, y′(0) = −1.

For γ = 1/2, and γ = 1, simultaneously plot your numerical approximations of y.

Forced harmonic oscillators without damping
Consider the systems described by the differential equation

my′′(t) + ky(t) = F (t). (4.6)

In many instances, the external force F (t) is periodic, so assume that F (t) = F0 cos(ωt). If ω0 =√
k/m 6= ω, then the general solution of 4.6 is given by

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

m(ω2
0 − ω2)

cos(ωt).

If ω0 = ω, then the general solution is

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

2mω0
t sin(ω0t).

When ω0 = ω, the solution contains a term that grows arbitrarily large as t → ∞. If we
included damping, then the solution would be bounded but large for small γ and ω close to ω0.

Consider a physical spring-mass system. Equation 4.6 holds only for small oscillations; this
is where Hooke’s law is applicable. However, the fact that the equation predicts large oscillations
suggests the spring-mass system could fall apart as a result of the external force. This mechanical
resonance has been known to cause failure of bridges, buildings, and airplanes.

Problem 5. Use the RK4 method to solve the damped and forced harmonic oscillator satis-
fying

2y′′ + γy′ + 2y = 2 cos(ωt), 0 ≤ t ≤ 40,

y(0) = 2, y′(0) = −1.
(4.7)

For the following values of γ and ω, plot your numerical approximations of y(t): (γ, ω) =

(0.5, 1.5), (0.1, 1.1), and (0, 1). Compare your results with Figure4.7.



44 Lab 4. Numerical Methods for Initial Value Problems; Harmonic Oscillators

0 5 10 15 20 25 30 35 40
x

20

15

10

5

0

5

10

15

20
y

γ= . 5, ω= 1. 5

γ= . 1, ω= 1. 1

γ= 0, ω= 1

Figure 4.6: Solutions of (4.7) for several values of ω and γ.
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