
10 Random Forests

Lab Objective: Understand how to build and use a classification tree and a random forest.

Classification Trees
Decision Classification trees are a class of decision trees used in a wide variety of settings where
labeled training data is available. The desired outcome is a model that can accurately assign labels
to unlabeled data. Decision trees are widely used because they have a fast run time, low computation
cost, and can handle irrelevant, missing, and noisy data easily.

We begin with a data set of samples, such as information about customers from a certain store.
Each sample contains a variety of features, such as if the individual is married or has children. The
sample also has a classification label, such as whether or not the person made a specific purchase.

A classification tree is composed of many nodes, which ask a question (i.e. “Is income >= 85?”)
and then split the data based on the answers. If the response is True, then the sample is “pushed”
down the tree to the left child node. If the response is False, then the sample is “pushed” down the
tree to the right child node. A leaf node is a node that has no child node. Upon arrival at a leaf, an
unlabeled sample is labeled with the classification that matches the majority of labeled samples at
that leaf. Table 10.1 includes information about 10 individuals and then an indicator of whether or
not they made a certain purchase. To simplify construction of the tree, all data is numeric, so 1=Yes
and 0=No for yes/no questions.

Suppose we wanted to guess whether a single college student making under $30,000 would
purchase this item. Starting at the top of the tree, we compare our sample to the question and first
choose the right branch, and then we compare with the second question and choose the right branch
again. Now we reach a leaf with the dictionary {0:1}. The key 0 corresponds to the label, and the
value 1 means one of our original samples is at this leaf with that label. Since 100% of samples at
this leaf are labeled with 0, our new sample college student will be predicted to share the label 0.

If we arrived instead at a leaf with the dictionary {0:1, 1:4}, then one of our original samples
at this leaf would be labeled 0 and four would be labeled 1, so the majority vote would assign the
label 1 to our new sample.
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Married (Y/N) Children Income ($1000) Purchased (Y/N)
0 5 125 0
1 0 100 0
0 0 70 0
1 3 120 0
0 0 95 1
1 0 60 0
0 2 220 1
0 0 85 1
1 0 75 0
0 0 90 1

Table 10.1: Customer data with 3 features (Married, Children, Income) and a label (Purchase)
indicating whether or not the customer bought the item.

Is Marriage >= 1?

{0: 4}

T

Is Income >= 85?

F

Is Children >= 5?

T

{0: 1}

F

{0: 1}

T

{1: 4}

F

Figure 10.1: A classification tree built using Table 10.1. Each leaf includes a dictionary of the label
(0 or 1) and how many individuals from the data match the classification. In this example, each leaf
contains individuals with only one label.

Problem 1. At each node in a classification tree, a question indicates which branch a sample
belongs to. Write a match method for the class Question that accepts a sample and returns
True or False depending on how the sample’s features compare to the question. This method
will handle one feature at a time. For example, in the example above, a single college student
making $20,000 would be a sample represented by the array [0, 0, 20].
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Next, write a partition function that partitions a data set for a given question into two
numpy arrays: left and right. Note that left will contain samples where the match method
returns True and right will contain samples where the match method returns False. Return
the left and right regions of the partition in that order. If one region is empty, return it as
None.

Measures
To use the partition function from Problem 1, we need to know which question to ask at each
node. Usually, the question is determined by the split that maximizes either the Gini impurity or
the information gain. Gini impurity measures how often a sample would be mislabeled based on the
distribution of labels. It is a measure of homogeneity of labels, so it is 0 when all samples at a node
have the same label.

Definition 10.1. Let D be a data set with K different class labels and N different samples. Let Nk
be the number of samples labeled class k for each 1 ≤ k ≤ K, and let fk = Nk

N . We define the Gini
impurity to be

G(D) = 1−
K∑
k=1

f2
k .

Information gain is based on the concept of Information Theory entropy. It measures the
difference between two probability distributions. If the distributions are equal, then the information
gain is 0. We will use a modified version of information gain for simplicity.

Definition 10.2. Let sD(p, x) = D1, D2 be a partition of data D. We define the information gain
of this partition to be

I(sD(p, x)) = G(D)−
2∑
i=1

|Di|
|D|
·G(Di)

where |D| represents the number of samples (or rows) in D.

Problem 2. Write a function gini() that computes the Gini impurity of an array of data
with the class labels in the last column. Write another function info_gain() that computes
the information gain for a given split of data. Make sure these functions account for the case
of the data array containing only a single sample.

The file animals.csv contains information about 7 features for 100 animals. The last
column, the class labels, indicates whether or not an animal lives in the ocean. You may use
this file to test your functions. To test your functions, your values should match those below.

>>> import numpy as np
# Load in the data
>>> animals = np.loadtxt('animals.csv', delimiter=',')
# Load in feature names
>>> features = np.loadtxt('animal_features.csv', delimiter=',', dtype=str,
... comments=None)
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# Load in sample names
>>> names = np.loadtxt('animal_names.csv', delimiter=',', dtype=str)

# Test your functions
>>> gini(animals)
0.4758
# split animals into two sets with fifty animals in each
>>> info_gain(animals[:50], animals[50:], gini(animals))
0.14579999999999999

Optimal Split

The optimal split of a data set can be chosen by maximizes either the Gini impurity or the information
gain. We will optimize the information gain, so the optimal split is

s∗D = sD(p∗, x∗),

where
p∗, x∗ = argmaxp,xI(sD(p, x)).

Sometimes the partition to split on may separate the data into very small subsets with only
a few samples each. This can make the classification tree vulnerable to overfitting and noisy data.
For this reason, classification trees include an argument to specify the smallest allowable leaf size, or
the minimum number of samples at the node. This number depends on the size of the whole data
set; for example, data with 10,000 samples would have a larger minimum leaf than our first example
using data with only 10 samples.

Problem 3. Write a function find_best_split() that computes the optimal split of a data
set by checking through all possible Questions associated with the data (each unique value
in each feature (column)). Recall that the final column has the class label and will have no
possible questions associated with it. Include a minimum leaf argument defaulting to 5. Do not
allow the best split to include a leaf smaller than this size. Return the information gain and
question associated with the best split. If two splits have the same information gain, choose
the first split.

The output for the animals data set should be
(0.12259833679833688, Is # legs/tentacles >= 2.0?).

Building the Tree

Once the optimal split is determined, the node is defined to be a Leaf node or a Decision node. As
described earlier, leaf nodes have no children nodes and is where the classification for a sample is
made. If the optimal split returns a left and right tree, then the node is a decision node and has a
question associated with it to determine which path a sample should follow. The next two problems
will walk through building a classification tree using the functions and classes from the previous
problems.
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Problem 4. Write the class Leaf. It should have an attribute prediction that is the dictio-
nary of how many samples at the leaf belong to each label, as shown in the leaves of Figure
10.1.

Next, write the class Decision_Node. This should have three attributes: an associated
Question, a left branch, and a right branch. The branches will be Leaf or Decision_Node
objects. Name these three attributes question, left, and right.

In addition to having a minimum leaf size, it’s also important to have a maximum depth for
trees. Without restricting the depth, the tree can become very large; if there is no minimum leaf size,
it can be one less than the number of training samples. Limiting the depth can stop the tree from
having too many splits, preventing it from becoming too complex and overfitting the training data.
It’s also important to not have too shallow of a tree because then the tree will underfit the data.

Problem 5. Write a function build_tree() that uses your previous functions to build a classi-
fication tree. Include a minimum leaf argument defaulting to 5 and a maximum depth argument
defaulting to 4. Start counting depth at 0. For comparison, the tree in Figure 10.1 has depth
3. You will probably want to build this tree recursively.

Make a Leaf if the remaining data has too few samples, if the depth is too much, or if
the information gain is 0. Otherwise, make a partition and build a new tree for each branch,
returning those as Decision_Nodes.

The last column in the animals.csv file indicates whether or not the animal lives in the
ocean; this is the class label for this data set. Test your classifier with this file and the function
draw_tree. This will display and save a pdf of the graph. Examine the figure and test various
parameters to check if your functions are working properly.

# How to draw a tree
>>> my_tree = build_tree(animals, features)
>>> draw_tree(my_tree)

Achtung!

The function draw_tree relies on the graphviz package. These are are two options to aid in
installing the graphviz package.

• You can try downloading by typing conda install -c conda-forge python-graphviz
if you have the Anaconda distribution. If draw_tree returns an error about pdf being an
unrecognized file type, try typing dot -c in your terminal.

• If you get an error related to a PATH problem you may need to download graphviz to
your computer by following the instructions found at this link: Download graphviz.

https://graphviz.org/download/
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Predicting

It’s important to test your tree to ensure that it predicts class labels fairly accurately and so that
you can adjust the minimum leaf and maximum depth parameters as needed. It is customary to
randomly assign some of your labeled data to a training set that you use to fit your tree and then
use the rest of your data as a testing set to check accuracy.

Problem 6. Write a function predict_tree that returns the predicted class label for a new
sample given a trained tree. You will probably have to make this recursive in order to traverse
the branches and reach a Leaf node with prediction information.

Next, write a function analyze_tree that accepts a labeled data set (with the labels in
the last column, as in animals.csv) and a trained classification tree and returns the proportion
of samples that the tree labels correctly.

Test your function with the animals.csv file. Shuffle the data set with np.random.
shuffle() and use 80 samples to train your classification tree. Use the other 20 samples as
the test set to see how accurately your tree classifies them. Your tree should be able to classify
this set with roughly 80% accuracy on average, given the default parameters.

Random Forest

As noted, one of the main issues with Decision Trees is their tendency to overfit Random forests are
a way of mitigating overfitting that cannot be fixed by restricting the depth and leaf size. A random
forest is just what it sounds like–a collection of trees. Each tree is trained randomly, meaning that
at each node, only a small, random subset of the features is available by which to determine the next
split. The size of this subset should be small relative to the total number of features present. Let n
be the total number of features in the data set. One common method, and the one we will use here,
is to split on

√
n features, rounding down where applicable.

When predicting the label of a new sample, each trained tree in the forest casts a vote, deter-
mined as above, and the sample is labeled according to the majority vote of the trees.

Problem 7. Add an argument random_subset to build_tree() and find_best_split(),
defaulting to False, that indicates whether or not the tree should be trained randomly. When
True, each node should be restricted to a random combination of

√
n features to use in its split,

where n is the total number of features (note that class labels are not features).
Next, write a function predict_forest() that accepts a new sample and a trained forest

(as a list of trees). It should return the assigned label, found by majority vote of the trees.
Finally, write a function analyze_forest() that accepts a labeled data set and a trained

forest and analyzes the accuracy of the forest’s predictions.
Test your functions out on the animals.csv file. Examine the graphs of the individual

trees to see how they compare to the non-randomized versions.
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Scikit-Learn
Next, we’ll compare our implementation to scikit-learn’s RandomForestClassifier. Rather than
accepting all the data as a single array, as in our implementation, this package accepts the feature
data as the first argument and all of the labels as the second argument.

>>> from sklearn.ensemble import RandomForestClassifier

# Create the forest with the appropriate arguments and 200 trees
>>> forest = RandomForestClassifier(n_estimators=200, max_depth=4,
... min_samples_leaf=5)

# Shuffle the data
>>> shuffled = np.random.permutation(animals)
>>> train = shuffled[:80]
>>> test = shuffled[80:]

# Fit the model to your data, passing the labels in as the second argument
>>> forest.fit(train[:,:-1], train[:,-1])

# Test the accuracy with the testing set
>>> forest.score(test[:,:-1], test[:,-1])
0.85

Problem 8. The file parkinsons.csv contains annotated speech data from people with and
without Parkinson’s Disease. The first column is the subject ID, columns 2-27 are various
features, and the last column is the label indicating whether or not the subject has Parkinson’s.
You will need to remove the first column so your forest doesn’t use participant ID to predict
class labels. Feature names are contained in the file parkinsons_features.csv.

Write a function to compare your forest implementation to the package from scikit-learn.
Because of the size of this data set, we will only use a small portion of the samples and build a
very simple forest. Randomly select 130 samples. Use 100 in training your forest and 30 more
in testing it. Include 5 trees in the forest and use min_samples_leaf=15. Time how long it
takes to train and analyze your forest.

Repeat this with scikit-learn’s package, using the same 100 training samples and 30 test
samples. Set n_estimators=5 and min_samples_leaf=15.

Next, using scikit-learn’s package, run the whole data set, using the default parameters.
Use 80% of the data to train the forest and the other 20% to test it.

Return three tuples, where each tuple contains the accuracy and time for each variation.
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