
19 Policy Function
Iteration

Lab Objective: Iterative methods can be powerful ways to solve dynamic optimization problems
without computing the exact solution. Often we can iterate very quickly to the true solution, or at
least within some ε error of the solution. These methods are significantly faster than computing the
exact solution using dynamic programming. We demonstrate two iterative methods, value iteration
(VI) and policy iteration (PI), and use them to solve a deterministic Markov decision process.

Dynamic Optimization
Many dynamic optimization problems take the form of a Markov decision process. A Markov decision
process is similar to that of a Markov chain, but rather than determining state movement using only
probabilities, state movement is determined based on probabilities, actions, and rewards. They are
formulated as follows.

T is a set of discrete time periods. In this lab, T = 0, 1, . . . , L, where L is the final time period.
S is the set of possible states. The set of allowable actions for each state s is As. st+1 = g(st, at) is
a transition function that determines the state st+1 at time t+ 1 based on the previous state st and
action at. The reward u(st, at, st+1) is the reward for taking action a while in state s at time t and
the next state being state st+1.

The time discount factor β ∈ [0, 1] determines how much the reward function decreases in value
with time. Looking at the cake eating problem described in the previous lab, the cake goes stale
with each passing day. In other words, each day you do not finish the cake, the reward of eating a
piece decreases. β accounts for this decrease in value.

Let Ns,a be the set of all possible next states when taking action a in state s. p(st, at, st+1)

is the probability of taking action a at time t while in state s and arriving at state st+1 ∈ Ns,a. A
deterministic Markov process has p(st, at, st+1) = 1 ∀s, a. This means that Ns,a has one element
∀s, a. A stochastic Markov process has p(st, at, st+1) ≤ 1, which implies that there can be multiple
possible next states for taking a given action in a given state. As a result, Ns,a has multiple elements
for each s, a.

The dynamic optimization problem is

195

196 Lab 19. Policy Function Iteration

max
a

L∑
t=0

βtu(st, at) (19.1)

subject to st+1 = g(st, at) ∀t. (19.2)

The cake eating problem follows this format where S consists of the possible amounts of remain-
ing cake (i

W), ct is the amount of cake we can eat, and the amount of cake remaining st+1 = g(st, at)

is wt − ct, where wt is the amount of cake we have left and ct is the amount of cake we eat at time
t. This is an example of a deterministic Markov process.

For this lab, we define a dictionary P to represent the decision process. This dictionary contains
all of the information about the states, actions, probabilities, and rewards. Each dictionary key is a
state-action combination and each dictionary value is a list of tuples.

P [s][a] = [(p(s, a, s̄), s̄, u(s, a, s̄), is_terminal), ...]

Note the slight notation change from (st, at, st+1) to (s, a, s̄). In the dictionary, s is the current
state, a is the action, s̄ ∈ Ns,a is the next state if action a is taken, and is_terminal indicates if s̄
is a stopping point. In addition, p(s, a, s̄) is the probability of taking action a while in state s, and
u(s, a, s̄) is the reward for taking action a while in state s.

Moving on a Grid
Now consider an N ×N grid. Assume that a robot moves around the grid, one space at a time, until
it reaches the lower right hand corner and stops. Each square is a state, S = {0, 1, . . . , N2 − 1}, and
the set of actions is {Left,Down,Right, Up}. For this lab, Left = 0, Down = 1, Right = 2, and
Up = 3. If you take the action a = 1, then you move Down on the grid.

Let N = 2 and label the squares as displayed below. In this example, we define the reward
to be −1 if the robot moves into 2, −1 if the robot moves into 0 from 1, and 1 when it reaches the
end, 3. We define the reward function to be u(s, a, s̄) = u(s̄). Since this is a deterministic model,
p(s, a, s̄) = p(s̄) = 1 for all possible s, a.

0 1
2 3

As is the set of actions that keep the robot on the grid. If the robot is in the top left hand corner,
the only allowed actions are Down and Right so A0 = {1, 2}. The transition function g(s, a) = s̄

can be explicitly defined for each s, a where s̄ is the new state after moving.
All of this information is encapsulated in P . We define P [s][a] for all states and actions, even

if they are not possible. This simplifies coding the algorithm but is not necessary.

P[0][0] = [(0, 0, 0, False)] P[2][0] = [(0, 2, -1, False)]
P[0][1] = [(1, 2, -1, False)] P[2][1] = [(0, 2, -1, False)]
P[0][2] = [(1, 1, 0, False)] P[2][2] = [(1, 3, 1, True)]
P[0][3] = [(0, 0, 0, False)] P[2][3] = [(1, 0, 0, False)]
P[1][0] = [(1, 0, -1, False)] P[3][0] = [(0, 0, 0, True)]
P[1][1] = [(1, 3, 1, True)] P[3][1] = [(0, 0, 0, True)]
P[1][2] = [(0, 0, 0, False)] P[3][2] = [(0, 0, 0, True)]
P[1][3] = [(0, 0, 0, False)] P[3][3] = [(0, 0, 1, True)]

197

For the sake of clarity, we will do a quick example using the above dictionary. We first assume
that we start in state 0 corresponding to the 0 in the above grid. Next, we move Down the grid
to state 2. This corresponds to taking action 1. To get the correct values from the dictionary, we
look at P [s][a] or in this case P [0][1] = [(1, 2,−1, False)]. So, when we move Down from square 0 to
square 2, p(s̄) = 1, u(s̄) = −1, and s̄ = 2. As a final note, when the action is not possible p(s̄) = 0,
as shown in the dictionary above.

We define the value function V (s) to be the maximum possible reward of starting in state s.
Then using Bellman’s optimality equation,

V (s) = max
a∈As
{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + βV (s̄))}. (19.3)

The summation occurs when it is a stochastic Markov process. For example, if the robot is in
the top left corner and we want it to move right, we could have the probability of the robot actually
moving right as .5. In this case, P [0][2] = [(.5, 1, 0, False), (.5, 2,−1, False)]. This type of process
will occur later in the lab.

Value Iteration
In the previous lab, we used dynamic programming to solve for the value function. This was a
recursive method where we calculated all possible values for each state and time period. Value
iteration is another algorithm that solves the value function by taking an initial value function and
calculating a new value function iteratively. Since we are not calculating all possible values, it is
typically faster than dynamic programming.

Convergence of Value Iteration

A function f that is a contraction mapping has a fixed point p such that f(p) = p. Blackwell’s
contraction theorem can be used to show that Bellman’s equation is a “fixed point” (it actually acts
more like a fixed function in this case) for an operator T : L∞(X;R)→ L∞(X;R) where L∞(X;R)

is the set of all bounded functions:

T [f](s) = max
a∈As
{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + βf(s̄))} (19.4)

It can be shown that 19.1 is the fixed “point” of our operator T . A result of contraction mappings is
that there exists a unique solution to 19.4.

Vk+1(si) = T [Vk](si) = max
a∈As
{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + βVk(s̄))} (19.5)

where an initial guess for V0(s) is used. As k → ∞, it is guaranteed that (Vk(s)) → V ∗(s).
Because of the contraction mapping, if Vk+1(s) = Vk(s) ∀ s, we have found the true value function,
V ∗(s).

As an example, let V0 = [0, 0, 0, 0] and β = 1, where each entry of V0 represents the maximum
value at that state, and V0(s) = V0[s] if we are using the array or list form of the value function. We
calculate V1(s) from the robot example above. For V1(0), we choose the max of the possible outcomes,
states 1 or 2, after moving. Thus we use P [0][2] for state 1 because moving from state 0 to state 1

requires going right, action 2.

198 Lab 19. Policy Function Iteration

V1(0) = max
a∈A0

{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + V0(s̄))}

= max{p(1) ∗ (u(1) + V0(1)), p(2) ∗ (u(2) + V0(2)))}
= max{1(0 + 0), 1(−1 + 0)}
= max{0,−1}
= 0

V1(1) = max{p(0) ∗ (u(0) + V0(0)), p(3) ∗ (u(3) + V0(3))}
= max{1(−1 + 0), 1(1 + 0)}
= 1

V1(2) = max{p(0) ∗ (u(0) + V0(0)), p(3) ∗ (u(3) + V0(3))}
= max{1(0 + 0), 1(1 + 0)}
= 1

V1(3) = max{p(1) ∗ (u(1) + V0(1)), p(2) ∗ (u(2) + V0(2))}
= max{1(0 + 0), 1(0 + 0)}
= 0

This calculation gives V1 = [0, 1, 1, 0]. Repeating the process yields V2 = [1, 1, 1, 0]. Repeating
a third time gives V3 = [1, 1, 1, 0], which is the same as V2, so the process has converged. This means
that the solution is [1, 1, 1, 0]. Thus, the total maximum reward the robot can achieve by starting on
square i is the ith entry of the solution [1, 1, 1, 0].

When implementing functions in this lab, instead of only looking at possible actions a ∈ As, we
can consider all of the actions. This will not affect the results, because p(s̄) = 0 when an action is not
possible. This simplifies the coding significantly. For example, when calculating Vk+1(si) consider
the following lines of code.

sa_vector = np.zeros(nA)
for a in range(nA):

for tuple_info in P[s][a]:
tuple_info is a tuple of (probability, next state, reward, done)
p, s_, u, _ = tuple_info
sums up the possible end states and rewards with given action
sa_vector[a] += (p * (u + beta * V_old[s_]))

#add the max value to the value function
V_new[s] = np.max(sa_vector)

Problem 1. Write a function called value_iteration() that will accept a dictionary P rep-
resenting the decision process, the number of states, the number of actions, a discount factor
β ∈ (0, 1], the tolerance amount ε, and the maximum number of iterations maxiter. Perform
value iteration until ‖Vk+1 − Vk‖ < ε or k > maxiter. Return the final vector representing V ∗

and the number of iterations. Test your code on the example given above.

199

Calculating the Policy

While knowing the maximum expected value is helpful, it is usually more important to know the
policy that generates the most value. Value Iteration tells the robot what reward he can expect, but
not how to get it. The policy vector, c, is found by using the policy function: π : R → R. π(s) is
the action we should take while in state s to maximize reward. We can modify the Bellman equation
using V ∗(s), which is the true value function we found in problem 1, to find π:

π(s) = argmaxa∈As{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + β ∗ V ∗(s̄))} (19.6)

Using value iteration, we found V ∗ = [1, 1, 1, 0] in the example above. We find π(0) from the
example above with β = 1 by looking at actions 1 and 2 (since actions 0 and 3 have probability 0).

π(0) = argmax1,2{p(2) ∗ (u(2) + V ∗(2)), p(1) ∗ (u(1) + V ∗(1))}
= argmax{1 ∗ (−1 + 1), 1 ∗ (0 + 1)}
= argmax{0, 1}
= 2

So when the robot is in state 0, he should take action 2, moving Right. This avoids the −1

penalty for moving Down into square 2. Similarly,

π(1) = argmax0,1{1 ∗ (−1 + 1), 1 ∗ (1 + 0)}
= argmax{0, 1} = 1

π(2) = argmax2,3{1 ∗ (1 + 0), 1 ∗ (0 + 1)}
= argmax{1, 1} = 2

Since 3 is terminal, it does not matter what π(3) is. We set it to 0 for convenience. The policy
corresponding to the optimal reward is [2, 1, 2, 0]. The robot should move to square 3 if possible,
avoiding 2 because it has a negative reward.

Note

Note that π gives the optimal action a to take at each state s. It does not give a sequence of
actions to take in order to maximize the policy.

Problem 2. Write a function called extract_policy() that will accept a dictionary P repre-
senting the decision process, the number of states, the number of actions, an array representing
the value function, and a discount factor β ∈ (0, 1], defaulting to 1. Return the policy vector
corresponding to V ∗. Test your code on the example with β = 1.

200 Lab 19. Policy Function Iteration

Policy Iteration
For dynamic programming problems, it can be shown that value function iteration converges relative
to the discount factor β. As β → 1, the number of iterations increases dramatically. As mentioned
earlier β is usually close to 1, which means this algorithm can converge slowly. In value iteration,
we used an initial guess for the value function, V0 and used (19.1) to iterate towards the true value
function. Once we achieved a good enough approximation for V ∗, we recovered the true policy
function π∗. Instead of iterating on our value function, we can instead make an initial guess for
the policy function, π0, and use this to iterate toward the true policy function. We do so by taking
advantage of the definition of the value function, where we assume that our policy function yields
the most optimal result. This is policy iteration.

That is, given a specific policy function πk, we can modify (19.1) by assuming that the policy
function is the optimal choice. This process, called policy evaluation, evaluates the value function for
a given policy.

Vk+1(s) = max
a∈[As]

{Σs̄∈Ns,a(p(s̄) ∗ (u(s̄) + β ∗ Vk(s̄))} = Σs̄∈Ns,π(s)
(p(s̄) ∗ (u(s̄) + β ∗ Vk(s̄)) (19.7)

The last equality occurs because in state s, the robot should choose the action that maximizes
reward, which is π(s) by definition. Similarly to value iteration, policy iteration iterates until the
desired tolerance is reached. This ensures that we get the value function that optimizes the reward
for each starting state.

Problem 3. Write a function called compute_policy_v() that accepts a dictionary P repre-
senting the decision process, the number of states, the number of actions, an array representing
a policy, a discount factor β ∈ (0, 1], and a tolerance amount ε. Use the policy evaluation
process described above to return the value function corresponding to the policy.

Test your code on the policy vector generated from extract_policy() for the example.
The result should be the same value function array from value_iteration().

Now that we have the value function for our policy, we can take the value function and find a
better policy. This is called policy improvement. This step is the same method used in value iteration
to find the policy. In other words, this step uses the extract_policy() method from 2 with the newly
computed value function.

Policy function iteration starts with an intial π0 and iterates using policy evalutaion and policy
improvement successively until the desired tolerance is reached. The algorithm for policy function
iteration, using two of the functions that you previously implemented, can be summarized as follows:

Algorithm 19.1 Policy Iteration
1: procedure Policy Iteration Function(P, nS, nA, β, tol, maxiter)
2: π0 ← [π0(w0), π0(w1), . . . , π0(wN)] . Common choice is π0(wi) = wi−1 with π0(0) = 0

3: for k = 0, 1, . . . , maxiter do . Iterate only maxiter times at most
4: vk+1 = compute_policy_v(πk) . Policy evaluation using compute_policy_v
5: πk+1 = extract_policy(vk+1) . Policy improvement using extract_policy
6: if ||πk+1 − πk|| < ε then
7: break . Stop iterating if the policy doesn’t change enough
8: return Vk+1, πk+1

201

Problem 4. Write a function called policy_iteration() that will accept a dictionary P rep-
resenting the decision process, the number of states, the number of actions, a discount factor
β ∈ (0, 1], the tolerance amount ε, and the maximum number of iterations maxiter. Perform
policy iteration until ‖πk+1 − πk‖ < ε or k > maxiter. Return the final vector representing
Vk, the optimal policy πk, and the number of iterations. Test your code on the example given
above and compare your answers to the results from problems 1 and 2.
(Hint: This is just the Policy Iteration algorithm, except you also return the number of itera-
tions)

The Frozen Lake Problem
For the rest of the lab, we will be using OpenAi Gym environments. They can be installed using
conda or pip.

$ pip install gym[all]

In the Frozen Lake problem, you and your friends tossed a frisbee onto a mostly frozen lake.
The lake is divided into an N ×N grid where the top left hand corner is the start, the bottom right
hand corner is the end, and the other squares are either frozen or holes. To retrieve the frisbee, you
must successfully navigate around the melted ice without falling. The possible actions are left, right,
up, and down. Since ice is slippery, you won’t always move in the intended direction. Hence, this
is a stochastic Markov process, i.e. p(st, at, st+1) < 1. If you fall, your reward is 0. If you succeed,
your reward is 1. There are two scenarios: N = 4 and N = 8.

S H
H H

H
H F

Figure 19.1: Diagram of the 4x4 scenario. The green S represents the starting point and the green F
represents the frisbee. Red squares marked H are holes. Blue squares are pieces of the frozen lake.

This problem can be found in two environments in OpenAi Gym. To run the 4 × 4 scenario,
use env_name='FrozenLake-v0'. For the 8× 8 scenario, use env_name='FrozenLake8x8-v0'.

Using Gym

To use gym, we import it and create an environment based on the built-in gym environment. The
FrozenLake environment has 3 important attributes, P , nS, and nA. P is similar to the dictionaries
we used in the previous problems. As previously mentioned, p(st, at, st+1) < 1, which means the set
Ns,a has more than one value. If you did not create your earlier functions to account for that, it
will not work as intended on this dictionary. We will use the enivronment’s generated P instead of
creating our own dictionary of states and actions.

We can calculate the optimal policy with value iteration or policy iteration using these 3 at-
tributes. Since the ice is slippery, this policy will not always result in a reward of 1.

202 Lab 19. Policy Function Iteration

import gym
from gym import wrappers
Make environment for 4x4 scenario
env_name = 'FrozenLake-v0'
env = gym.make(env_name).env
Find number of states and actions
number_of_states = env.nS
number_of_actions = env.nA
Get the dictionary with all the states and actions
dictionary_P = env.P

Problem 5. Write a function that runs value_iteration and policy_iteration on Frozen-
Lake. It should accept a boolean basic_case defaulting to True and an integer M defaulting
to 1000 that indicates how many times to run the simulation. If basic_case is True, run the
4x4 scenario. If not, run the 8x8 scenario. Calculate the value function and policy for the
environment using both value iteration and policy iteration. Return the policy generated by
value iteration and the policy and value function generated by policy iteration. Set the mean
total rewards of both policies to 0 and return them as well.

The gym environments have built-in functions that allow us to simulate each step of the environ-
ment. Before running a scenario in gym, always put it in the starting state by calling env.reset().
To simulate moving, call env.step.

import gym
from gym import wrappers
Make environment for 4x4 scenario
env_name = 'FrozenLake-v0'
env = gym.make(env_name).env
Put environment in starting state
obs = env.reset()
Take a step in the optimal direction and update variables
obs, reward, done, _ = env.step(int(policy[obs]))

The step function returns four values: observation, reward, done, info. The observation is an
environment-specific object representing the observation of the environment. For FrozenLake, this is
the current state. When we step, or take an action, we get a new observation, or state, as well as the
reward for taking that action. If we fall into a hole or reach the frisbee, the simulation is over so we
are done. When we are done, the boolean done is True. The info value is a dictionary of diagnostic
information. It will not be used in this lab.

203

Problem 6. Write a function run_simulation() that takes in the environment env, a policy
policy, a boolean render, and a discount factor β. Calculate the total reward for the policy for
one simulation using env.reset() and env.step(). If render is True, render the environment
using env.render(mode = 'human'). Stop the simulation when done is True. Make sure
not to use env.close() within this function. Use env.reset, because it is much faster than
opening and closing the environment every time you run the simulation. You should close the
environment at the end of your frozen_lake() function.
(Hint: When calculating reward, use βk as shown in 19.1.)

Next, modify frozen_lake() to call run_simulation() for both the value iteration policy
and the policy iteration policy M times. Finally, make sure that frozen_lake() returns the
updated values of the mean total reward for both policies.
(Hint: Even though you run the simlutaion M times, you should only calculate the policies
once, because each policy depends on the dictionary P , which does not change.)

	to 20ptILabs
	Policy Function Iteration

