
11 Monte Carlo
Integration

Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand
has no antiderivative. Traditional numerical integration techniques like Newton-Cotes formulas and
Gaussian quadrature usually work well for one-dimensional integrals, but rapidly become inefficient
in higher dimensions. Monte Carlo integration is an integration strategy that has relatively slow
convergence, but that does extremely well in high-dimensional settings compared to other techniques.
In this lab we implement Monte Carlo integration and apply it to a classic problem in statistics.

Volume Estimation
Since the area of a circle of radius r is A = πr2, one way to numerically estimate π is to compute
the area of the unit circle. Empirically, we can estimate the area by randomly choosing points in a
domain that encompasses the unit circle. The percentage of points that land within the unit circle
approximates the percentage of the area of the domain that the unit circle occupies. Multiplying this
percentage by the total area of the sample domain gives an estimate for the area of the circle.

Since the unit circle has radius r = 1, consider the square domain Ω = [−1, 1] × [−1, 1]. The
following code samples 2000 uniformly distributed random points in Ω, determines what percentage
of those points are within the unit circle, then multiplies that percentage by 4 (the area of Ω) to get
an estimate for π.

>>> import numpy as np
>>> from scipy import linalg as la

Get 2000 random points in the 2-D domain [-1,1]x[-1,1].
>>> points = np.random.uniform(-1, 1, (2,2000))

Determine how many points are within the circle.
>>> lengths = la.norm(points, axis=0)
>>> num_within = np.count_nonzero(lengths < 1)

Estimate the circle's area.
>>> 4 * (num_within / 2000)
3.198

113

114 Lab 11. Monte Carlo Integration

The estimate π ≈ 3.198 isn’t perfect, but it only differs from the true value of π by about
0.0564. On average, increasing the number of sample points decreases the estimate error.

1.0 0.5 0.0 0.5 1.0
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

500 points; 3.088

1.0 0.5 0.0 0.5 1.0
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

2000 points; 3.198

1.0 0.5 0.0 0.5 1.0
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

8000 points; 3.167

Figure 11.1: Estimating the area of the unit circle using random points.

Problem 1. The n-dimensional open unit ball is the set Un = {x ∈ Rn | ‖x‖2 < 1}. Write a
function that accepts an integer n and a keyword argument N defaulting to 104. Estimate the
volume of Un by drawing N points over the n-dimensional domain [−1, 1]×[−1, 1]×· · ·×[−1, 1].
(Hint: the volume of [−1, 1]× [−1, 1]× · · · × [−1, 1] is 2n.)

When n = 2, this is the same experiment outlined above so your function should return
an approximation of π. The volume of the U3 is 4

3π ≈ 4.18879, and the volume of U4 is
π2

2 ≈ 4.9348. Try increasing the number of sample points N to see if your estimates improve.

Integral Estimation
The strategy for estimating π can be formulated as an integral problem. Define f : R2 → R by

f(x) =

{
1 if ‖x‖2 < 1 (x is within the unit circle)
0 otherwise,

and let Ω = [−1, 1]× [−1, 1] as before. Then∫ 1

−1

∫ 1

−1

f(x, y) dx dy =

∫
Ω

f(x) dV = π.

To estimate the integral we chose N random points {xi}Ni=1 in Ω. Since f indicates whether or not a
point lies within the unit circle, the total number of random points that lie in the circle is the sum of
the f(xi). Then the average of these values, multiplied by the volume V (Ω), is the desired estimate:

∫
Ω

f(x) dV ≈ V (Ω)
1

N

N∑
i=1

f(xi). (11.1)

This remarkably simple equation can be used to estimate the integral of any integrable function
f : Rn → R over any domain Ω ⊂ Rn and is called the general formula for Monte Carlo integration.

115

The intuition behind (11.1) is that 1
N

∑N
i=1 f(xi) approximates the average value of f on Ω,

and multiplying the approximate average value by the volume of Ω yields the approximate integral
of f over Ω. This is a little easier to see in one dimension: for a single-variable function f : R→ R,
the Average Value Theorem states that the average value of f over an interval [a, b] is given by

favg =
1

b− a

∫ b

a

f(x) dx.

Then using the approximation favg ≈ 1
N

∑N
i=1 f(xi), the previous equation becomes

∫ b

a

f(x) dx = (b− a)favg ≈ V (Ω)
1

N

N∑
i=1

f(xi), (11.2)

which is (11.1) in one dimension. In this setting Ω = [a, b] and hence V (Ω) = b− a.

Problem 2. Write a function that accepts a function f : R→ R, bounds of integration a and
b, and an integer N defaulting to 104. Use np.random.uniform() to sample N points over the
interval [a, b], then use (11.2) to estimate the integral∫ b

a

f(x) dx.

Test your function on the following integrals, or on other integrals that you can check by hand.∫ 2

−4

x2 dx = 24

∫ 2π

−2π

sin(x) dx = 0

∫ 10

1

1

x
dx = log(10) ≈ 2.30259

∫ 5

1

∣∣sin(10x) cos(10x) +
√
x sin(3x)

∣∣ dx ≈ 4.502

Achtung!

Be careful not to use Monte Carlo integration to estimate integrals that do not converge. For
example, since 1/x approaches ∞ as x approaches 0 from the right, the integral∫ 1

0

1

x
dx

does not converge. Even so, attempts at Monte Carlo integration still return a finite value. Use
various numbers of sample points to see whether or not the integral estimate is converging.

>>> for N in [5000, 7500, 10000]:
... print(np.mean(1. / np.random.uniform(0, 1, N)), end='\t')
...
11.8451683722 25.5814419888 7.64364735049 # No convergence.

116 Lab 11. Monte Carlo Integration

Integration in Higher Dimensions
The implementation of (11.1) for a function f : Rn → R with n > 1 introduces a few tricky details,
but the overall procedure is the same for the case when n = 1. We consider only the case where
Ω ⊂ Rn is an n-dimensional box [a1, b1]× [a2, b2]× · · · × [an, bn].

1. If n = 1 then Ω is a line, so V (Ω) = b1 − a1. If n = 2 then Ω is a rectangle, and hence
V (Ω) = (b1−a1)(b2−a2), the product of the side lengths. The volume of a higher-dimensional
box Ω is also the product of the side lengths,

V (Ω) =

n∏
i=1

(bi − ai) (11.3)

2. It is easy to sample uniformly over an interval [a, b] with np.random.uniform(), or even over
the n-dimensional cube [a, b] × [a, b] × · · · × [a, b] (such as in Problem 1). However, if ai 6= aj
or bi 6= bj for any i 6= j, the samples need to be constructed in a slightly different way.

The interval [0, 1] can be transformed to the interval [a, b] by scaling it so that it is the same
length as [a, b], then shifting it to the appropriate location.

[0, 1]
scale by b−a−−−−−−−−→ [0, b− a]

shift by a−−−−−−→ [a, b]

This suggests a strategy for sampling over [a1, b1] × [a2, b2] × · · · × [an, bn]: sample uniformly
from the n-dimensional box [0, 1]× [0, 1]×· · ·× [0, 1], multiply the ith component of each sample
by bi − ai, then add ai to that component.

[0, 1]× · · · × [0, 1]
scale−−−→ [0, b1 − a1]× · · · × [0, bn − an]

shift−−−→ [a1, b1]× · · · × [an, bn] (11.4)

Problem 3. Write a function that accepts a function f : Rn → R, a list of lower bounds
[a1, a2, . . . , an], a list of upper bounds [b1, b2, . . . , bn], and an integer N defaulting to 104. Use
(11.1), (11.3), and (11.4) with N sample points to estimate the integral∫

Ω

f(x) dV,

where Ω = [a1, b1]× [a2, b2]× · · · × [an, bn]. Return your answer as a float.
(Hint: use a list comprehension to calculate all of the f(xi) quickly.)

«««< HEAD Test your function on the following integrals (as well as the one-dimensional
examples in problem 2). ======= Test your function on the following integrals and the
single dimensional examples from Problem 2 (hint: make sure bounds are inputted as lists,
even in the single dimensional case). »»»> e6a1ccbacbc0b83d15381a8db4cb2b6efd50ecbd∫ 1

0

∫ 1

0

x2 + y2 dx dy =
2

3

∫ 1

−2

∫ 3

1

3x− 4y + y2 dx dy = 54

∫ 4

−4

∫ 3

−3

∫ 2

−2

∫ 1

−1

x+ y − wz2 dx dy dz dw = 0

117

Note carefully how the order of integration defines the domain; in the last example, the x-y-z-w
domain is [−1, 1] × [−2, 2] × [−3, 3] × [−4, 4], so the lower and upper bounds passed to your
function should be [−1,−2,−3,−4] and [1, 2, 3, 4], respectively.

Convergence
Monte Carlo integration has some obvious pros and cons. On the one hand, it is difficult to get highly
precise estimates. In fact, the error of the Monte Carlo method is proportional to 1/

√
N , where N

is the number of points used in the estimation. This means that dividing the error by 10 requires
using 100 times more sample points.

On the other hand, the convergence rate is independent of the number of dimensions of the
problem. That is, the error converges at the same rate whether integrating a 2-dimensional function or
a 20-dimensional function. This gives Monte Carlo integration a huge advantage over other methods,
and makes it especially useful for estimating integrals in high dimensions where other methods become
computationally infeasible.

Problem 4. The probability density function of the joint distribution of n independent normal
random variables, each with mean 0 and variance 1, is the function f : Rn → R defined by

f(x) =
1

(2π)n/2
e−

xTx
2 .

Though this is a critical distribution in statistics, f does not have a symbolic antiderivative.
Integrate f several times to study the convergence properties of Monte Carlo integration.

1. Let n = 4 and Ω = [− 3
2 ,

3
4]× [0, 1]× [0, 1

2]× [0, 1] ⊂ R4. Define f and Ω so that you can
integrate f over Ω using your function from Problem 3.

2. Use scipy.stats.mvn.mvnun() to get the “exact” value of F =
∫

Ω
f(x) dV . As an

example, the following code computes the integral over [−1, 1]× [−1, 3]× [−2, 1] ⊂ R3.

>>> from scipy import stats

Define the bounds of integration.
>>> mins = np.array([-1, -1, -2])
>>> maxs = np.array([1, 3, 1])

The distribution has mean 0 and covariance I (the nxn identity).
>>> means, cov = np.zeros(3), np.eye(3)

Compute the integral with SciPy.
>>> stats.mvn.mvnun(mins, maxs, means, cov)[0]
0.4694277116055261

118 Lab 11. Monte Carlo Integration

3. Use np.logspace() to get 20 integer values of N that are roughly logarithmically spaced
from 101 to 105. For each value of N , use your function from Problem 3 to compute an
estimate F̃ (N) of the integral with N samples. Compute the relative error |F−F̃ (N)|

|F | for
each value of N .

4. Plot the relative error against the sample size N on a log-log scale. Also plot the line
1/
√
N for comparison. Your results should be similar to Figure 11.2.

101 102 103 104 105
10 5

10 4

10 3

10 2

10 1
Relative Error
1/ N

Figure 11.2: Monte Carlo integration converges at the same rate as 1/
√
N where N is the number of

samples used in the estimate. However, the convergence is independent of dimension, which is why
this strategy is so commonly used for high-dimensional integration.

	to 20ptILabs
	Monte Carlo Integration

