
2 Unix Shell 2

Lab Objective: Introduce system management, calling Unix Shell commands within Python, and
other advanced topics. As in the last Unix lab, the majority of learning will not be had in finishing
the problems, but in following the examples.

Archiving and Compression
In file management, the terms archiving and compressing are commonly used interchangeably. How-
ever, these are quite different. Archiving is combining a certain number of files into one file. The
resulting file will be the same size as the group of files that were archived. Compressing takes a file
or group of files and shrinks the file size as much as possible. The resulting compressed file will need
to be extracted before being used.

The ZIP file format is common for archiving and compressing files. If the zip Unix command
is not installed on your system, you can download it by running

>>> sudo apt-get install zip

Note that you will need to have administrative rights to download this package. To unzip a file, use
unzip.

Note

To begin this lab, unzip the Shell2.zip file into your UnixShell2/ directory using a terminal
command.

Unzip a zipped file using the unzip command.
$ unzip Shell2.zip
Archive Shell2.zip

creating: Shell2/
creating: Shell2/Test/
inflating: Shell2/.DS_Store
creating: Shell2/Scripts/

17

18 Lab 2. Unix Shell 2

extracting: Shell2/Scripts/fiteen_secs
extracting: Shell2/Scripts/script3
extracting: Shell2/Scripts/hello.sh...

While the zip file format is more popular on the Windows platform, the tar utility is more
common in the Unix environment.

Note

When submitting this lab, you will need to archive and compress your entire Shell2/ directory
into a file called Shell2.tar.gz and push Shell2.tar.gz as well as shell2.py to your online
repository.

If you are doing multiple submissions, make sure to delete your previous Shell2.tar.gz
file before creating a new one from your modified Shell2/ directory. Refer to Unix1 for more
information on deleting files.

As a final note, please do not push the entire directory to your online repository. Only
push ShellFinal.tar.gz and shell2.py.

The example below demonstrates how to archive and compress our Shell2/ directory. The -z
flag calls for the gzip compression tool, the -v flag calls for a verbose output, the -p flag tells the
tool to preserve file permission, and the -f flag indicates the next parameter will be the name of the
archive file. Note that the -f flag must always come last.

Remove your archive tar.gz file if you already have one.
$ rm -v Shell2.tar.gz
removed 'Shell2.tar.gz'

Create a new one from your update Shell2 directory content.
Remember that the * is the wildcard that represents all strings.
$ tar -zcpf Shell2.tar.gz Shell2/*

Working with Files

Displaying File Contents

The unix file system presents many opportunities for the manipulation, viewing, and editing of files.
Before moving on to more complex commands, we will look at some of the commands available to
view the content of a file.

The cat command, followed by the filename, will display all the contents of a file on the
terminal screen. This can be problematic if you are dealing with a large file. There are a few
available commands to control the output of cat in the terminal. See Table 2.1.

As an example, use less <filename> to restrict the number of lines that are shown. With this
command, use the arrow keys to navigate up and down and press q to exit.

19

Command Description
cat Print all of the file contents
more Print the file contents one page at a time, navigating forwards
less Like more, but you navigate forward and backwards
head Print the first 10 lines of a file
head -nk Print the first k lines of a file
tail Print the last 10 lines of a file
tail -nk Print the last k lines of a file

Table 2.1: Commands for printing file contents

Pipes and redirects
To combine terminal commands, we can use pipes. When we combine or pipe commands, the output
of one command is passed to the other. We pipe commands together using the | (bar) operator. In
the example directly below, the cat command output is piped to wc -l (wc stands for word count,
and the -l flag tells the wc command to count lines).

In the second part of the example, ls -s is piped to sort -nr. Refer to the Unix 1 lab for
explanations of ls and sort. Recall that the man command followed by an additional command will
output details on the additional command’s possible flags and what they mean (for example man
sort).

$ cd Shell2/Files/Feb
Output the number of lines in assignments.txt.
$ cat assignments.txt | wc -l
9
Sort the files by file size and output file names and their size.
$ls -s | sort -nr
4 project3.py
4 project2.py
4 assignments.txt
4 pics
total 16

In addition to piping commands together, when working with files specifically, we can use
redirects. A redirect, represented as < in the terminal, passes the file to a terminal command.

To save a command’s output to a file, we can use > or >>. The > operator will overwrite anything
that may exist in the output file whereas >> will append the output to the end of the output file.
Examples of redirects and writing to a file are given below.

Gets the same result as the first command in the above example.
$ wc -l < assignments.txt
9
Writes the number of lines in the assignments.txt file to word_count.txt.
$ wc -l < assignments.txt >> word_count.txt

20 Lab 2. Unix Shell 2

Problem 1. The words.txt file in the Documents/ directory contains a list of words that are
not in alphabetical order. Write an alphabetically sorted list of words in words.txt to a new
file in your Documents/ called sortedwords.txt using pipes and redirects. After you write the
alphabetized words to the designated file, also write the number of words in words.txt to the
end of sortedwords.txt. Save this file in the Documents/ directory. Try to accomplish this
with a total of two commands or fewer.

Resource Management
To be able to optimize performance, it is valuable to be aware of the resources, specifically hard drive
space and computer memory, being used.

Job Control
One way to monitor and optimize performance is in job control. Any time you start a program in
the terminal (you could be running a script, opening ipython, etc.,) that program is called a job.
You can run a job in the foreground and also in the background. When we run a program in the
foreground, we see and interact with it. Running a script in the foreground means that we will not
be able to enter any other commands in the terminal while the script is running. However, if we
choose to run it in the background, we can enter other commands and continue interacting with other
programs while the script runs.

Consider the scenario where we have multiple scripts that we want to run. If we know that these
scripts will take awhile, we can run them all in the background while we are working on something
else. Table 2.2 lists some common commands that are used in job control. We strongly encourage
you to experiment with some of these commands.

Command Description
COMMAND & Adding an ampersand to the end of a command

runs the command in the background
bg %N Restarts the Nth interrupted job in the background
fg %N Brings the Nth job into the foreground
jobs Lists all the jobs currently running
kill %N Terminates the Nth job
ps Lists all the current processes
Ctrl-C Terminates current job
Ctrl-Z Interrupts current job
nohup Run a command that will not be killed if the user logs out

Table 2.2: Job control commands

The fifteen_secs and five_secs scripts in the Scripts/ directory take fifteen seconds and
five seconds to execute respectively. The python file fifteen_secs.py in the Python/ directoy takes
fifteen seconds to execute, this file counts to fifteen and then outputs "Success!". These will be
particularly useful as you are experimenting with these commands.

Remember, that when you use the ./ command in place of other commands you will probably
need to change permissions. For more information on changing permissions, review Unix 1. Run the
following command sequence from the Shell2 directory.

21

Remember to add executing permissions to the user.
$./Scripts/fifteen_secs &
$ python Python/fifteen_secs.py &
$ jobs
[1]+ Running ./Scripts/fifteen_secs &
[2]- Running python Python/fifteen_secs.py &
$ kill %1
[1]- Terminated ./Scripts/fifteen_secs &
$ jobs
[1]+ Running python Python/fifteen_secs.py &
After the python script finishes it outputs the results.
$ Success!
To move on, click enter after "Success!" appears in the terminal.

List all current processes
$ ps
PID TTY TIME CMD
6 tty1 00:00:00 bash
44 tty1 00:00:00 ps

$./Scripts/fifteen_secs &
$ ps
PID TTY TIME CMD
6 tty1 00:00:00 bash
59 tty1 00:00:00 fifteen_secs
60 tty1 00:00:00 sleep
61 tty1 00:00:00 ps

Stop fifteen_secs
$ kill 59
$ ps
PID TTY TIME CMD
6 tty1 00:00:00 bash
60 tty1 00:00:00 sleep
61 tty1 00:00:00 ps

[1]+ Terminated ./fifteen_secs

Problem 2. In addition to the five_secs and fifteen_secs scripts, the Scripts/ folder
contains three scripts (named script1, script2, and script3) that each take about forty-
five seconds to execute. From the Scripts directory, execute each of these commands in the
background in the following order; script1, script2, and script3. Do this so all three are
running at the same time. While they are all running, write the output of jobs to a new file
log.txt saved in the Scripts/ directory.
(Hint: In order to get the same output as the solutions file, you need to run the ./ command
and not the bash command.)

22 Lab 2. Unix Shell 2

Using Python for File Management
OS and Glob

Bash has control flow tools like if-else blocks and loops, but most of the syntax is highly unintuitive.
Python, on the other hand, has extremely intuitive syntax for these control flow tools, so using
Python to do shell-like tasks can result in some powerful but specific file management programs.
Table 2.3 relates some of the common shell commands to Python functions, most of which come
from the os module in the standard library.

Shell Command Python Function
ls os.listdir()
cd os.chdir()
pwd os.getcwd()
mkdir os.mkdir(), os.mkdirs()
cp shutil.copy()
mv os.rename(), os.replace()
rm os.remove(), shutil.rmtree()
du os.path.getsize()

chmod os.chmod()

Table 2.3: Shell-Python compatibility

In addition to these, Python has a few extra functions that are useful for file management and
shell commands. See Table 2.4. The two functions os.walk() and glob.glob() are especially useful
for doing searches like find and grep. Look at the example below and then try out a few things on
your own to try to get a feel for them.

Function Description
os.walk() Iterate through the subfolders and subfolder files of a given directory.

os.path.isdir() Return True if the input is a directory.
os.path.isfile() Return True if the input is a file.
os.path.join() Join several folder names or file names into one path.

glob.glob() Return a list of file names that match a pattern.
subprocess.call() Execute a shell command.

subprocess.check_output() Execute a shell command and return its output as a string.

Table 2.4: Other useful Python functions for shell operations.

Your output may differ from the example's output.
>>> import os
>>> from glob import glob

Get the names of all Python files in the Python/ directory.
>>> glob("Python/*.py")
['Python/calc.py',
'Python/count_files.py',
'Python/fifteen_secs.py
'Python/mult.py',

23

'Python/project.py']

Get the names of all .jpg files in any subdirectory.
The recursive parameter lets '**' match more than one directory.
>> glob("**/*.jpg", recursive=True)
['Photos/IMG_1501.jpg',
'Photos/img_1879.jpg',
'Photos/IMG_2164.jpg',
'Photos/IMG_2379.jpg',
'Photos/IMG_2182.jpg',
'Photos/IMG_1510.jpg',
'Photos/IMG_2746.jpg',
'Photos/IMG_2679.jpg',
'Photos/IMG_1595.jpg',
'Photos/IMG_2044.jpg',
'Photos/img_1796.jpg',
'Photos/IMG_2464.jpg',
'Photos/img_1987.jpg',
'Photos/img_1842.jpg']

Walk through the directory, looking for .sh files.
>>> for directory, subdirectories, files in os.walk('.'):
... for filename in files:
... if filename.endswith(".sh"):
... print(os.path.join(directory, filename))
...
./Scripts/hello.sh
./Scripts/organize_photos.sh

Problem 3. Write a Python function grep() that accepts the name of a target string and
a file pattern. Find all files in the current directory or its subdirectories that match the file
pattern. Next, check within the contents of the matched file for the target string. For example,
grep("range", "*.py") should search Python files for the command range. Return a list of
the file paths that matched the file pattern and the target string. For example, if you’re in
the Shell2/ directory and your grep function matches the ‘calc.py’ file then your grep should
return ‘Python/calc.py’

The Subprocess module

The subprocess module allows Python to execute actual shell commands in the current working
directory. Some important commands for executing shell commands from the subprocess module
are listed in Table 2.5.

$ cd Shell2/Scripts
$ python

24 Lab 2. Unix Shell 2

Function Description
subprocess.call() run a Unix command

subprocess.check_output() run a Unix command and record its output
subprocess.check_output.decode() this tranlates Unix command output to a string

subprocess.Popen() use this to pipe togethether Unix commands

Table 2.5: Python subprocess module important commands

>>> import subprocess
>>> subprocess.call(["ls", "-l"])
total 40
-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3
-rw-r--r-- 1 username groupname 21 Aug 26 2016 fiften_secs
0
Decode() translates the result to a string.
>>> file_info = subprocess.check_output(["ls", "-l"]).decode()
>>> file_info.split('\n')
['total 40',
'-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 fiften_secs',
'']

Popen is a class of the subprocess module, with its own atrributes and commands. It pipes
together a few commands, similar to we did at the beginning of the lab. This allows for more
versatility in the shell input commands. If you wish to know more about the Popen class, go to the
subprocess documentation on the internet.

$ cd Shell2
$ python
>>> import subprocess
>>> args = ["cat Files/Feb/assignments.txt | wc -l"]
shell = True indicates to open a new shell process
note that task is now an object of the Popen class
>>> task = subprocess.Popen(args, shell=True)
>>> 9

Achtung!

https://docs.python.org/3/library/subprocess.html

25

If shell commands depend on user input, the program is vulnerable to a shell injection attack.
This applies to Unix Shell commands as well as other situations like web browser interaction
with web servers. Be extremely careful when creating a shell process from Python. There are
specific functions, like shlex.quote(), that quote specific strings that are used to construct shell
commands. But, when possible, it is often better to avoid user input altogether. For example,
consider the following function.

>>> def inspect_file(filename):
... """Return information about the specified file from the shell."""
... return subprocess.check_output(["ls", "-l", filename]).decode()

If inspect_file() is given the input ".; rm -rf /", then ls -l . is executed innocently,
and then rm -rf / destroys the computer by force deleting everything in the root directory.a

Be careful not to execute a shell command from within Python in a way that a malicious user
could potentially take advantage of.

aSee https://en.wikipedia.org/wiki/Code_injection#Shell_injection for more example attacks.

Problem 4. Using os.path and Glob, write a Python function that accepts an integer n. Search
the current directory and all subdirectories for the n largest files. Then sort the list of filenames
from the largest to the smallest files. Next, write the line count of the smallest file to a file
called smallest.txt into the current directory. Finally, return the list of filenames, including
the file path, in order from largest to smallest.
(Hint: the shell commands ls -s shows the file size.)

As a note, same as in problem 3, to get this problem correct, you need to return the entire
file path starting from the directory that was searched and continuing to the name
of the file. Do not return just the filenames, or the complete file path. For example, if you
are currently in the UnixShell2/ directory, meaning the next directory down to be searched will
be Shell2, then Shell2/ should be the first part in the names of largest files returned by your
function. More concretely, if ‘data.txt’ is one files your function will return then instead of
returning just ‘data.txt’ or all of
‘YourComputerSpecificFilePath/UnixShell2/Shell2/Files/Mar/docs/data.txt’ as part
of your list, you would return only ‘Shell2/Files/Mar/docs/data.txt’. Notice the paths
returned will vary based on both the current working directory you’re in and what directories
were searched. However, also make sure that your file paths do not begin with ‘./’ (Hint: To
avoid the additional ‘./’ in your file path, use Glob instead of os.walk.)

Downloading Files
The Unix shell has tools for downloading files from the internet. The most popular are wget and
curl. At its most basic, curl is the more robust of the two while wget can download recursively.
This means that wget is capable of following links and directory structure when downloading content.

When we want to download a single file, we just need the URL for the file we want to download.
This works for PDF files, HTML files, and other content simply by providing the right URL.

https://en.wikipedia.org/wiki/Code_injection#Shell_injection

26 Lab 2. Unix Shell 2

$ wget https://github.com/Foundations-of-Applied-Mathematics/Data/blob/master/←↩
Volume1/dream.png

The following are also useful commands using wget.

Download files from URLs listed in urls.txt.
$ wget -i list_of_urls.txt

Download in the background.
$ wget -b URL

Download something recursively.
$ wget -r --no-parent URL

Problem 5. The file urls.txt in the Documents/ directory contains a list of URLs. Download
the files in this list using wget and move them to the Photos/ directory.

sed and awk
sed and awk are two different scripting languages in their own right. sed is a stream editor; it
perfoms basic transformations on input text. Awk is a text processing language that manipulates and
reports data. Like Unix, these languages are easy to learn but difficult to master. It is very common
to combine Unix commands and sed and awk commands.

Printing Specific Lines Using sed
We have already used the head and tail commands to print the beginning and end of a file respec-
tively. What if we wanted to print lines 30 to 40, for example? We can accomplish this using sed.
In the Documents/ folder, you will find the lines.txt file. We will use this file for the following
examples.

Same output as head -n3.
$ sed -n 1,3p lines.txt
line 1
line 2
line 3

Same output as tail -n3.
$ sed -n 3,5p lines.txt
line 3
line 4
line 5

Print lines 1,3,5.
$ sed -n -e 1p -e 3p -e 5p lines.txt
line 1

27

line 3
line 5

Find and Replace Using sed
Using sed, we can also find and replace. We can perform this function on the output of another
commmand, or we can perform this function in place on other files. The basic syntax of this sed
command is the following.

sed s/str1/str2/g

This command will replace every instance of str1 with str2. More specific examples follow.

$ sed s/line/LINE/g lines.txt
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

Notice the file didn't change at all
$ cat lines.txt
line 1
line 2
line 3
line 4
line 5

To save the changes, add the -i flag
$ sed -i s/line/LINE/g lines.txt
$ cat lines.txt
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

Formatting output using awk
Earlier in this lab we mentioned ls -l, and as we have seen, this outputs lots of information. Using
awk, we can select which fields we wish to print. Suppose we only cared about the file name and the
permissions. We can get this output by running the following command.

$ cd Shell2/Documents
$ ls -l | awk ' {print $1, $9} '
total
-rw-r--r--. assignments.txt

28 Lab 2. Unix Shell 2

-rw-r--r--. doc1.txt
-rw-r--r--. doc2.txt
-rw-r--r--. doc3.txt
-rw-r--r--. doc4.txt
-rw-r--r--. files.txt
-rw-r--r--. lines.txt
-rw-r--r--. newfiles.txt
-rw-r--r--. people.txt
-rw-r--r--. review.txt
-rw-r--r--. urls.txt
-rw-r--r--. words.txt

Notice we pipe the output of ls -l to awk. When calling a command using awk, we have to
use quotation marks. It is a common mistake to forget to add these quotation marks. Inside these
quotation marks, commands always take the same format.

awk ' <options> {<actions>} '

In the remaining examples we will not be using any of the options, but we will address various
actions.

In the Documents/ directory, you will find a people.txt file that we will use for the following
examples. In our first example, we use the print action. The $1 and $9 mean that we are going to
print the first and ninth fields.

Beyond specifying which fields we wish to print, we can also choose how many characters to
allocate for each field. This is done using the % command within the printf command, which allows
us to edit how the relevant data is printed. Look at the last part of the example below to see how it
is done.

contents of people.txt
$ cat people.txt
male,John,23
female,Mary,31
female,Sally,37
male,Ted,19
male,Jeff,41
female,Cindy,25

Change the field separator (FS) to space at the beginning of run using BEGIN
Printing each field individually proves we have successfully separated the ←↩

fields
$ awk ' BEGIN{ FS = "," }; {print $1,$2,$3} ' < people.txt
male John 23
female Mary 31
female Sally 37
male Ted 19
male Jeff 41
female Cindy 25

29

Format columns using printf so everything is in neat columns in different ←↩
order

$ awk ' BEGIN{ FS = "," }; {printf "%-6s %2s %s\n", $1,$3,$2} ' < people.txt
male 23 John
female 31 Mary
female 37 Sally
male 19 Ted
male 41 Jeff
female 25 Cindy

The statement "%-6s %2s %s\n" formats the columns of the output. This says to set aside six
characters left justified, then two characters right justified, then print the last field to its full length.

Problem 6. Inside the Documents/ directory, you should find a file named files.txt. This
file contains details on approximately one hundred files. The different fields in the file are
separated by tabs. Using awk, sort, pipes, and redirects, write it to a new file in the current
directory named date_modified.txt with the following specifications:

• in the first column, print the date the file was modified

• in the second column, print the name of the file

• sort the file from newest to oldest based on the date last modified

All of this can be accomplished using one command.
(Hint: change the field separator to account for tab-delimited files by setting FS = "\t" in the
BEGIN command)

We have barely scratched the surface of what awk can do. Performing an internet search for
awk one-liners will give you many additional examples of useful commands you can run using awk.

Note

Remember to archive and compress your Shell2 directory before pushing it to your online
repository for grading.

https://www.google.com/search?q=awk+one-liners&oq=awk+one-liners&aqs=chrome..69i57j0l7.3924j0j7&sourceid=chrome&ie=UTF-8

30 Lab 2. Unix Shell 2

Additional Material
Customizing the Shell
Though there are multiple Unix shells, one of the most popular is the bash shell. The bash shell
is highly customizable. In your home directory, you will find a hidden file named .bashrc. All
customization changes are saved in this file. If you are interested in customizing your shell, you can
customize the prompt using the PS1 environment variable. As you become more and more familiar
with the Unix shell, you will come to find there are commands you run over and over again. You
can save commands you use frequently with alias. If you would like more information on these and
other ways to customize the shell, you can find many quality reference guides and tutorials on the
internet.

System Management
In this section, we will address some of the basics of system management. As an introduction, the
commands in Table 2.6 are used to learn more about the computer system.

Command Description
passwd Change user password
uname View operating system name
uname -a Print all system information
uname -m Print machine hardware
w Show who is logged in and what they are doing
whoami Print userID of current user

Table 2.6: Commands for system administration.

	to 20ptILabs
	Unix Shell 2

