
� The Standard Library

Lab Objective: Python is designed to make it easy to implement complex tasks with little code.
To that end, every Python distribution includes several built-in functions for accomplishing common
tasks. In addition, Python is designed to import and reuse code written by others. A Python file with
code that can be imported is called a module. All Python distributions include a collection of modules
for accomplishing a variety of tasks, collectively called the Python Standard Library. In this lab we
explore some built-in functions, learn how to create, import, and use modules, and become familiar
with the standard library.

Built-in Functions
Python has several built-in functions that may be used at any time. IPython’s object introspection
feature makes it easy to learn about these functions: start IPython from the command line and use
? to bring up technical details on each function.

In [1]: min?
Docstring:
min(iterable, *[, default=obj, key=func]) -> value
min(arg1, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its smallest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the smallest argument.
Type: builtin_function_or_method

In [2]: len?
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method

��

�6 Lab �. The Standard Library

Function Returns
abs() The absolute value of a real number, or the magnitude

of a complex number.
min() The smallest element of a single iterable, or the smallest

of several arguments. Strings are compared based on
lexicographical order: numerical characters first, then
upper-case letters, then lower-case letters.

max() The largest element of a single iterable, or the largest
of several arguments.

len() The number of items of a sequence or collection.
round() A float rounded to a given precision in decimal digits.

sum() The sum of a sequence of numbers.

Table 2.1: Common built-in functions for numerical calculations.

abs() can be used with real or complex numbers.
>>> print(abs(-7), abs(3 + 4j))
7 5.0

min() and max() can be used on a list, string, or several arguments.
String characters are ordered lexicographically.
>>> print(min([4, 2, 6]), min("aXbYcZ"), min('1', 'a', 'A'))
2 X 1
>>> print(max([4, 2, 6]), max("aXbYcZ"), max('1', 'a', 'A'))
6 c a

len() can be used on a string, list, set, dict, tuple, or other iterable.
>>> print(len([2, 7, 1]), len("abcdef"), len({1, 'a', 'a'}))
3 6 2

sum() can be used on iterables containing numbers, but not strings.
>>> my_list = [1, 2, 3]
>>> my_tuple = (4, 5, 6)
>>> my_set = {7, 8, 9}
>>> sum(my_list) + sum(my_tuple) + sum(my_set)
45
>>> sum([min(my_list), max(my_tuple), len(my_set)])
10

round() is particularly useful for formatting data to be printed.
>>> round(3.14159265358979323, 2)
3.14

See https://docs.python.org/3/library/functions.html for more detailed documentation
on all of Python’s built-in functions.

https://docs.python.org/3/library/functions.html

��

Problem 1. Write a function that accepts a list L and returns the minimum, maximum, and
average of the entries of L in that order as multiple values (separated by a comma). Can you
implement this function in a single line?

Namespaces
Whenever a Python object—a number, data structure, function, or other entity—is created, it is
stored somewhere in computer memory. A name (or variable) is a reference to a Python object, and
a namespace is a dictionary that maps names to Python objects.

The number 4 is the object, 'number_of_students' is the name.
>>> number_of_sudents = 4

The list is the object, and 'beatles' is the name.
>>> beatles = ["John", "Paul", "George", "Ringo"]

Python statements defining a function also form an object.
The name for this function is 'add_numbers'.
>>> def add_numbers(a, b):
... return a + b
...

A single equals sign assigns a name to an object. If a name is assigned to another name, that
new name refers to the same object as the original name.

>>> beatles = ["John", "Paul", "George", "Ringo"]
>>> band_members = beatles # Assign a new name to the list.
>>> print(band_members)
['John', 'Paul', 'George', 'Ringo']

To see all of the names in the current namespace, use the built-in function dir(). To delete a
name from the namespace, use the del keyword (with caution!).

Add 'stem' to the namespace.
>>> stem = ["Science", "Technology", "Engineering", "Mathematics"]
>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__', 'stem']

Remove 'stem' from the namespace.
>>> del stem
>>> "stem" in dir()
False
>>> print(stem)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'stem' is not defined

�8 Lab �. The Standard Library

Note

Many programming languages distinguish between variables and pointers. A pointer refers to
a variable by storing the address in memory where the corresponding object is stored. Python
names are essentially pointers, and traditional pointer operations and cleanup are done auto-
matically. For example, Python automatically deletes objects in memory that have no names
assigned to them (no pointers referring to them). This feature is called garbage collection.

Mutability

Every Python object type falls into one of two categories: a mutable object, which may be altered at
any time, or an immutable object, which cannot be altered once created. Attempting to change an
immutable object creates a new object in memory. If two names refer to the same mutable object, any
changes to the object are reflected in both names since they still both refer to that same object. On
the other hand, if two names refer to the same immutable object and one of the values is “changed,”
then one name will refer to the original object, and the other will refer to a new object in memory.

Achtung!

Failing to correctly copy mutable objects can cause subtle problems. For example, consider a
dictionary that maps items to their base prices. To make a similar dictionary that accounts for
a small sales tax, we might try to make a copy by assigning a new name to the first dictionary.

>>> holy = {"moly": 1.99, "hand_grenade": 3, "grail": 1975.41}
>>> tax_prices = holy # Try to make a copy for processing.
>>> for item, price in tax_prices.items():
... # Add a 7 percent tax, rounded to the nearest cent.
... tax_prices[item] = round(1.07 * price, 2)
...
Now the base prices have been updated to the total price.
>>> print(tax_prices)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

However, dictionaries are mutable, so 'holy' and 'tax_prices' actually
refer to the same object. The original base prices have been lost.
>>> print(holy)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

To avoid this problem, explicitly create a copy of the object by casting it as a new structure.
Changes made to the copy will not change the original object, since they are distinct objects
in memory. To fix the above code, replace the second line with the following:

>>> tax_prices = dict(holy)

��

Then, after running the same procedure, the two dictionaries will be different.

Problem 2. Determine which Python object types are mutable and which are immutable by
repeating the following experiment for an int, str, list, tuple, and set.

1. Create an object of the given type and assign a name to it.

2. Assign a new name to the first name.

3. Alter the object via only one of the names (for tuples, use my_tuple += (1,)).

4. Check to see if the two names are equal. If they are, then changing one name also changes
the other. Thus, both names refer to the same object and the object type is mutable.
Otherwise, the names refer to different objects—meaning a new object was created in
step 2—and therefore the object type is immutable.

For example, the following experiment shows that dict is a mutable type.

>>> dict_1 = {1: 'x', 2: 'b'} # Create a dictionary.
>>> dict_2 = dict_1 # Assign it a new name.
>>> dict_2[1] = 'a' # Change the 'new' dictionary.
>>> dict_1 == dict_2 # Compare the two names.
True # Both names changed!

Print a statement of your conclusions that clearly indicates which object types are mutable and
which are immutable.

Achtung!

Mutable objects cannot be put into Python sets or used as keys in Python dictionaries. However,
the values of a dictionary may be mutable or immutable.

>>> a_dict = {"key": "value"} # Dictionaries are mutable.
>>> broken = {1, 2, 3, a_dict, a_dict} # Try putting a dict in a set.
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'

>>> okay = {1: 2, "3": a_dict} # Try using a dict as a value.

�� Lab �. The Standard Library

Modules
A module is a Python file containing code that is meant to be used in some other setting, and not
necessarily run directly.1 The import statement loads code from a specified Python file. Importing a
module containing some functions, classes, or other objects makes those functions, classes, or objects
available for use by adding their names to the current namespace.

All import statements should occur at the top of the file, below the header but before any other
code. There are several ways to use import:

1. import <module> makes the specified module available under the alias of its own name.

>>> import math # The name 'math' now gives
>>> math.sqrt(2) # access to the math module.
1.4142135623730951

2. import <module> as <name> creates an alias for an imported module. The alias is added to
the current namespace, but the module name itself is not.

>>> import numpy as np # The name 'np' gives access to the numpy
>>> np.sqrt(2) # module, but the name 'numpy' does not.
1.4142135623730951
>>> numpy.sqrt(2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'numpy' is not defined

3. from <module> import <object> loads the specified object into the namespace without load-
ing anything else in the module or the module name itself. This is used most often to access
specific functions from a module. The as statement can also be tacked on to create an alias.

>>> from random import randint # The name 'randint' gives access to the
>>> r = randint(0, 10000) # randint() function, but the rest of
>>> random.seed(r) # the random module is unavailable.
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'random' is not defined

In each case, the final word of the import statement is the name that is added to the namespace.

Running and Importing

Consider the following simple Python module, saved as example1.py.

example1.py

data = list(range(4))

1
Python files that are primarily meant to be executed, not imported, are often called scripts.

��

def display():
print("Data:", data)

if __name__ == "__main__":
display()
print("This file was executed from the command line or an interpreter.")

else:
print("This file was imported.")

Executing the file from the command line executes the file line by line, including the code under
the if __name__ == "__main__" clause.

$ python example1.py
Data: [0, 1, 2, 3]
This file was executed from the command line or an interpreter.

Executing the file with IPython’s special %run command executes each line of the file and also
adds the module’s names to the current namespace. This is the quickest way to test individual

functions via IPython.

In [1]: %run example1.py
Data: [0, 1, 2, 3]
This file was executed from the command line or an interpreter.

In [2]: display()
Data: [0, 1, 2, 3]

Importing the file also executes each line,2 but only adds the indicated alias to the namespace.
Also, code under the if __name__ == "__main__" clause is not executed when a file is imported.

In [1]: import example1 as ex
This file was imported.

The module's names are not directly available...
In [2]: display()

NameError Traceback (most recent call last)
<ipython-input-2-795648993119> in <module>()
----> 1 display()

NameError: name 'display' is not defined

...unless accessed via the module's alias.
In [3]: ex.display()
Data: [0, 1, 2, 3]

2
Try importing the this or antigravity modules. Importing these modules actually executes some code.

�� Lab �. The Standard Library

Problem 3. Create a module called calculator.py. Write a function sum() that returns the
sum of two arguments and a function product() that returns the product of two arguments.
Also use import to add the sqrt() function from the math module to the namespace. When
this file is either run or imported, nothing should be executed.

In your solutions file, import your new custom module. Write a function that accepts two
numbers representing the lengths of the sides of a right triangle. Using only the functions from
calculator.py, calculate and return the length of the hypotenuse of the triangle.

Achtung!

If a module has been imported in IPython and the source code then changes, using import again
does not refresh the name in the IPython namespace. Use run instead to correctly refresh the
namespace. Consider this example where we test the function sum_of_squares(), saved in the
file example2.py.

example2.py

def sum_of_squares(x):
"""Return the sum of the squares of all positive integers
less than or equal to x.
"""
return sum([i**2 for i in range(1,x)])

In IPython, run the file and test sum_of_squares().

Run the file, adding the function sum_of_squares() to the namespace.
In [1]: %run example2

In [2]: sum_of_squares(3)
Out[2]: 5 # Should be 14!

Since 12+22+32 = 14, not 5, something has gone wrong. Modify the source file to correct
the mistake, then run the file again in IPython.

example2.py

def sum_of_squares(x):
"""Return the sum of the squares of all positive integers
less than or equal to x.
"""
return sum([i**2 for i in range(1,x+1)]) # Include the final term.

Run the file again to refresh the namespace.
In [3]: %run example2

��

Now sum_of_squares() is updated to the new, corrected version.
In [4]: sum_of_squares(3)
Out[4]: 14 # It works!

Remember that running or importing a file executes any freestanding code snippets, but
any code under an if __name__ == "__main__" clause will only be executed when the file is
run (not when it is imported).

The Python Standard Library
All Python distributions include a collection of modules for accomplishing a variety of common tasks,
collectively called the Python standard library. Some commonly standard library modules are listed
below, and the complete list is at https://docs.python.org/3/library/.

Module Description
cmath Mathematical functions for complex numbers.

itertools Tools for iterating through sequences in useful ways.
math Standard mathematical functions and constants.

random Random variable generators.
string Common string literals.
sys Tools for interacting with the interpreter.
time Time value generation and manipulation.

Use IPython’s object introspection to quickly learn about how to use the various modules and
functions in the standard library. Use ? or help() for information on the module or one of its names.
To see the entire module’s namespace, use the tab key.

In [1]: import math

In [2]: math?
Type: module
String form: <module 'math' (built-in)>
Docstring:
This module provides access to the mathematical functions
defined by the C standard.

Type the module name, a period, then press tab to see the module's namespace.
In [3]: math. # Press 'tab'.

acos() cos() factorial() isclose() log2() tan()
acosh() cosh() floor() isfinite() modf() tanh()
asin() degrees() fmod() isinf() nan tau
asinh() e frexp() isnan() pi trunc()
atan() erf() fsum() ldexp() pow()
atan2() erfc() gamma() lgamma() radians()
atanh() exp() gcd() log() sin()
ceil() expm1() hypot() log10() sinh()

https://docs.python.org/3/library/

�� Lab �. The Standard Library

copysign() fabs() inf log1p() sqrt()

In [3]: math.sqrt?
Signature: math.sqrt(x, /)
Docstring: Return the square root of x.
Type: builtin_function_or_method

The Itertools Module

The itertools module makes it easy to iterate over one or more collections in specialized ways.

Function Description
chain() Iterate over several iterables in sequence.
cycle() Iterate over an iterable repeatedly.

combinations() Return successive combinations of elements in an iterable.
permutations() Return successive permutations of elements in an iterable.

product() Iterate over the Cartesian product of several iterables.

>>> from itertools import chain, cycle # Import multiple names.

>>> list(chain("abc", ['d', 'e'], ('f', 'g'))) # Join several
['a', 'b', 'c', 'd', 'e', 'f', 'g'] # sequences together.

>>> for i,number in enumerate(cycle(range(4))): # Iterate over a single
... if i > 10: # sequence over and over.
... break
... print(number, end=' ')
...
0 1 2 3 0 1 2 3 0 1 2

A k-combination is a set of k elements from a collection where the ordering is unimportant.
Thus the combination (a, b) and (b, a) are equivalent because they contain the same elements. One
the other hand, a k-permutation is a sequence of k elements from a collection where the ordering
matters. Even though (a, b) and (b, a) contain the same elements, they are counted as different
permutations.

>>> from itertools import combinations, permutations

Get all combinations of length 2 from the iterable "ABC".
>>> list(combinations("ABC", 2))
[('A', 'B'), ('A', 'C'), ('B', 'C')]

Get all permutations of length 2 from "ABC". Note that order matters here.
>>> list(permutations("ABC", 2))
[('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'C'), ('C', 'A'), ('C', 'B')]

��

Problem 4. The power set of a set A, denoted P(A) or 2A, is the set of all subsets of A,
including the empty set ; and A itself. For example, the power set of the set A = {a, b, c} is
2A = {;, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Write a function that accepts an iterable A. Use an itertools function to compute and
return the power set of A as a list of sets (why couldn’t it be a set of sets in Python?). The
empty set should be returned as set().

�6 Lab �. The Standard Library

The Random Module
Many real-life events can be simulated by taking random samples from a probability distribution.
For example, a coin flip can be simulated by randomly choosing between the integers 1 (for heads)
and 0 (for tails). The random module includes functions for sampling from probability distributions
and generating random data.

Function Description
choice() Choose a random element from a non-empty sequence, such as a list.

randint() Choose a random integer integer over a closed interval.
random() Pick a float from the interval [0, 1).
sample() Choose several unique random elements from a non-empty sequence.

seed() Seed the random number generator.
shuffle() Randomize the ordering of the elements in a list.

Some of the most common random utilities involve picking random elements from iterables.

>>> import random

>>> numbers = list(range(1,11)) # Get the integers from 1 to 10.
>>> print(numbers)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.shuffle(numbers) # Mix up the ordering of the list.
>>> print(numbers) # Note that shuffle() returns nothing.
[5, 9, 1, 3, 8, 4, 10, 6, 2, 7]

>>> random.choice(numbers) # Pick a single element from the list.
5

>>> random.sample(numbers, 4) # Pick 4 unique elements from the list.
[5, 8, 3, 2]

>>> random.randint(1,10) # Pick a random number between 1 and 10.
10

The Time Module
The time module in the standard library include functions for dealing with time. In particular, the
time() function measures the number of seconds from a fixed starting point, called “the Epoch”
(January 1, 1970 for Unix machines).

>>> import time
>>> time.time()
1495243696.645818

The time() function is useful for measuring how long it takes for code to run: record the time
just before and just after the code in question, then subtract the first measurement from the second
to get the number of seconds that have passed.

��

>>> def time_for_loop(iters):
... """Time how long it takes to iterate 'iters' times."""
... start = time.time() # Clock the starting time.
... for _ in range(int(iters)):
... pass
... end = time.time() # Clock the ending time.
... return end - start # Report the difference.
...
>>> time_for_loop(1e5) # 1e5 = 100000.
0.005570173263549805
>>> time_for_loop(1e7) # 1e7 = 10000000.
0.26819777488708496

The Sys Module
The sys (system) module includes methods for interacting with the Python interpreter. For our
purposes, we care about the instance that you call a .py file in the command line or in your ipython
terminal using either ‘python’ followed by the name of a .py file or ‘%run’ followed by the name of
a .py file. One command we will use is sys.argv; which returns a list containing the .py file name
and all arguments that were passed to the interpreter. This way we can interact with these initial
arguments and execute certain parts of our code if the arguments satisfy certain conditions. This
will be implemented in problem 5. Note, command line arguments are passed in after the name of
the .py file and are separated by spaces like so:

the 'python' command followed by a .py file followed by any arguments
$ python yourProgram.py argument1 argument2 argument3

the equivalent form in an ipython terminal
In[1]: %run yourProgram.py argument1 argument2 argument3

Now we can execute code based on the command line arguments by inserting the use of the
sys module in our .py file:

example3.py
"""If there are two command line arguments after the .py file name, print a -

descriptive statment."""
import sys

if len(sys.argv) == 3: # if there's two arguments and the file name
print("the first command line argument is " + sys.argv[1])
print("the second command line argument is " + sys.argv[2])

else:
print("um... I need two after the .py file. This is not two:")
print(sys.argv)

Now provide command line arguments for the program to process.

�8 Lab �. The Standard Library

No extra command line arguments.
$ python example3.py
Output:
um... I need two after the .py file. This is not two:
['example3.py']

With two arguments the if statement executes.
$ python example3.py crunchy juicy
Output:
the first command line argument is crunchy
the second command line argument is juicy

Note that the first command line argument is always the filename, so that is always the first
element of the sys.argv list. This is why we have the if statement execute if the length of the list is
3 even though we want it to execute when there are 2 command line arguments. Also, sys.argv is
always a list of strings. If a number is provided on the command line, it is converted to a string when
it is stored insys.argv. In IPython, command line arguments are specified after the %run command.

In [1]: %run example3.py 42 too many
Output:
um... I need two after the .py file. This is not two:
['example3.py', '42', 'too', 'many']

Another way to get input from the program user is to prompt the user for text. The built-in
function input() pauses the program and waits for the user to type something. Like command line
arguments, the user’s input is parsed as a string.

>>> x = input("Enter a value for x: ")
Enter a value for x: 20 # Type '20' and press 'enter.'

>>> x
'20' # Note that x contains a string.

>> y = int(input("Enter an integer for y: "))
Enter an integer for y: 16 # Type '16' and press 'enter.'

>>> y
16 # Note that y contains an integer.

��

Problem 5. Shut the box is a popular British pub game that is used to help children learn
arithmetic. The player starts with the numbers 1 through 9, and the goal of the game is to
eliminate as many of these numbers as possible. At each turn the player rolls two dice, then
chooses a set of integers from the remaining numbers that sum up to the sum of the dice
roll. These numbers are removed, and the dice are then rolled again. The game ends when
none of the remaining integers can be combined to the sum of the dice roll, and the player’s
final score is the sum of the numbers that could not be eliminated. For a demonstration, see
https://www.youtube.com/watch?v=mwURQC7mjDI.

Modify your solutions file so that when the file is run with the correct command line
arguments (but not when it is imported), the user plays a game of shut the box. The provided
module box.py contains two functions that will be useful in your implementation of the game.
You do not need to understand exactly how the functions work, but you do need to be able to
import and use them correctly. Their functionality is outlined at the beginning of each function
declaration. Your game should match the following specifications:

• Require three total command line arguments: the file name (included by default), the
player’s name, and a time limit in seconds. If there are not exactly three command line
arguments, do not start the game.

• Track the player’s remaining numbers, starting with 1 through 9.

• Use the random module to simulate rolling two six-sided dice. However, if the sum of the
player’s remaining numbers is 6 or less, roll only one die.

• The player wins if they have no numbers left, and they lose if they are out of time or if
they cannot choose numbers to match the dice roll.

• If the game is not over, print the player’s remaining numbers, the sum of the dice roll,
and the number of seconds remaining. Prompt the user for numbers to eliminate. The
input should be one or more of the remaining integers, separated by spaces. If the user’s
input is invalid, prompt them for input again before rolling the dice again.
(Hint: use round() to format the number of seconds remaining nicely.)

• When the game is over, display the player’s name, their score, and the total number of
seconds since the beginning of the game. Congratulate or mock the player appropriately.

(Hint: Before you start coding, write an outline for the entire program, adding one feature
at a time. Only start implementing the game after you are completely finished designing it.)

Your game should look similar to the following examples. The characters in red are typed
inputs from the user.

$ python standard_library.py LuckyDuke 60

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Roll: 12
Seconds left: 60.0
Numbers to eliminate: 3 9

Numbers left: [1, 2, 4, 5, 6, 7, 8]

https://www.youtube.com/watch?v=mwURQC7mjDI

�� Lab �. The Standard Library

Roll: 9
Seconds left: 53.51
Numbers to eliminate: 8 1

Numbers left: [2, 4, 5, 6, 7]
Roll: 7
Seconds left: 51.39
Numbers to eliminate: 7

Numbers left: [2, 4, 5, 6]
Roll: 2
Seconds left: 48.24
Numbers to eliminate: 2

Numbers left: [4, 5, 6]
Roll: 11
Seconds left: 45.16
Numbers to eliminate: 5 6

Numbers left: [4]
Roll: 4
Seconds left: 42.76
Numbers to eliminate: 4

Score for player LuckyDuke: 0 points
Time played: 15.82 seconds
Congratulations!! You shut the box!

The next two examples show different ways that a player could lose (which they usually
do), as well as examples of invalid user input. Use the box module’s parse_input() to detect
invalid input.

$ python standard_library.py ShakySteve 10

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Roll: 7
Seconds left: 10.0
Numbers to eliminate: Seven # Must enter a number.
Invalid input

Seconds left: 7.64
Numbers to eliminate: 1, 2, 4 # Do not use commas.
Invalid input

Seconds left: 4.55
Numbers to eliminate: 1 2 3 # Numbers don't sum to the roll.
Invalid input

��

Seconds left: 2.4
Numbers to eliminate: 1 2 4

Numbers left: [3, 5, 6, 7, 8, 9]
Roll: 8
Seconds left: 0.31
Numbers to eliminate: 8
Game over! # Time is up!

Score for player ShakySteve: 30 points
Time played: 11.77 seconds
Better luck next time >:)

$ python standard_library.py SnakeEyesTom 10000

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Roll: 2
Seconds left: 10000.0
Numbers to eliminate: 2

Numbers left: [1, 3, 4, 5, 6, 7, 8, 9]
Roll: 2
Game over! # Numbers cannot match roll.

Score for player SnakeEyesTom: 43 points
Time played: 1.53 seconds
Better luck next time >:)

�� Lab �. The Standard Library

Additional Material

More Built-in Functions

The following built-in functions are worth knowing, especially for working with iterables and writing
very readable conditional statements.

Function Description
all() Return True if bool(entry) evaluates to True for every entry in

the input iterable.
any() Return True if bool(entry) evaluates to True for any entry in the

input iterable.
bool() Evaluate a single input object as True or False.
eval() Execute a string as Python code and return the output.
map() Apply a function to every item of the input iterable and return

an iterable of the results.

>>> from random import randint
Get 5 random numbers between 1 and 10, inclusive.
>>> numbers = [randint(1,10) for _ in range(5)]

If all of the numbers are less than 8, print the list.
>>> if all([num < 8 for num in numbers]):
... print(numbers)
...
[1, 5, 6, 3, 3]

If none of the numbers are divisible by 3, print the list.
>>> if not any([num % 3 == 0 for num in numbers]):
... print(numbers)
...

Two-Player Shut the Box

Consider modifying your shut the box program so that it pits two players against each other (one
player tries to shut the box while the other tries to keep it open). The first player plays a regular
round as described in Problem 5. Suppose he or she eliminates every number but 2, 3, and 6. The
second player then begins a round with the numbers 1, 4, 5, 7, 8, and 9, the numbers that the first
player had eliminated. If the second player loses, the first player gets another round to try to shut
the box with the numbers that the second player had eliminated. Play continues until one of the
players eliminates their entire list. In addition, each player should have their own time limit that
only ticks down during their turn. If time runs out on your turn, you lose no matter what.

��

Python Packages

Large programming projects often have code spread throughout several folders and files. In order
to get related files in different folders to communicate properly, the associated directories must
be organized into a Python packages. This is a common procedure when creating smart phone
applications and other programs that have graphical user interfaces (GUIs).

A package is simply a folder that contains a file called __init__.py. This file is always executed
first whenever the package is used. A package must also have a file called __main__.py in order to
be executable. Executing the package will run __init__.py and then __main__.py, but importing
the package will only run __init__.py.

Use the regular syntax to import a module or subpackage that is in the current package, and
use from <subpackage.module> import <object> to load a module within a subpackage. Once a
name has been loaded into a package’s __init__.py, other files in the same package can load the
same name with from . import <object>. To access code in the directory one level above the
current directory, use the syntax from .. import <object> This tells the interpreter to go up one
level and import the object from there. This is called an explicit relative import and cannot be done
in files that are executed directly (like __main__.py).

Finally, to execute a package, run Python from the shell with the flag -m (for “module-name”)
and exclude the extension .py.

$ python -m package_name

See https://docs.python.org/3/tutorial/modules.html#packages for examples and more
details.

https://docs.python.org/3/tutorial/modules.html#packages

