
1 Obstacle Avoidance

Lab Objective: Solve boundary value problems that arise when using Pontryagin’s Maximum
principle.

Pontryagin’s Maximum Principle
Now that we understand how to solve boundary value problems, we can apply this to solve optimal
control problems. Pontryagin’s Maximum Principle is a very common way to formulate control
problems as BVPs.

Fixed Time, Fixed Endpoint

We will begin with the more simple fixed time horizon problems. Fixed time horizon problems
are commonly reformulated as boundary value problems, and we can apply what we have already
learned about solving BVPs to make these problems easier to solve. We introduce fixed time horizon
problems with a cost functional of the following form

J(u) =

∫ tf

t0

L(t, s(t), u(t))dt+K(tf , sf), (1.1)

where t0 and tf are fixed. In this functional, L(t, s(t), u(t)) represents the cost of a certain path
determined by the control u, and K(tf , sf) is the terminal cost. We also have that

ṡ = f(t, s, u), s0 = s(t0), sf = s(tf). (1.2)

In these equations t is time, s is the state variable, and u is the control variable. The maximum
principle also uses the Hamiltonian equation

H(t, s, u, p) = 〈p, f(t, s, u)〉 − L(t, s, u), (1.3)

where p is a newly introduced variable called the costate. This Hamiltonian is then used to define
an ODE system. This first equation defines a costate ODE system

ṗ∗ = −Hs(t, s
∗, u∗, p∗), (1.4)

1

2 Lab 1. Obstacle Avoidance

where a variable marked with an asterisk is the optimal choice of that variable, meaning that equation
1.4 is only true for the optimal state s∗, costate p∗, and control u∗ functions. This next equation will
allow us to solve for the control in terms of the state and costate

0 = Hu(t, s
∗, u∗, p∗), ∀t ∈ [t0, tf]. (1.5)

The combination of these equations will allow us to create a BVP that will solve for the optimal
control u∗ and the associated states s∗. Our ODE comes from 1.2, 1.4, and 1.5, and the boundary
values will come from our initial and final conditions on s.

Problem 1. Given the following cost functional and boundary conditions, use the ODEs found
in 1.2, 1.4, and 1.5 to solve for and plot the optimal path and acceleration.

J(u) =

∫ 30

0

x2 +
2π

5
u2dt

s(t) =

[
x(t)

x′(t)

]
, s(0) =

[
0

1

]
, s(30) =

[
16

10

]
Plot your solutions for the optimal x(t) and u(t).

Figure 1.1: Solution to problem 1

3

Avoiding Collision

We now expand upon the technique learned above by adding an obstacle in our path. One area
of application that relies heavily on optimal control is autonomous driving. A common problem in
autonomous driving is the avoidance of obstacles. In this section we will outline a naïve solution to
obstacle avoidance with a fixed time horizon.

First we can begin by defining our state variable s. We will want to understand the position
and velocity at a given time so we will define the following state variable

s(t) =

x(t)

y(t)

ẋ(t)

ẏ(t)

 =

s1(t)

s2(t)

s3(t)

s4(t)

 , (1.6)

which allows us to track those states in R2.
We can then establish the ODE defined in equation 1.2 by examining ṡ(t)

ṡ(t) =

ṡ1(t)

ṡ2(t)

ṡ3(t)

ṡ4(t)

 =

ẋ(t)

ẏ(t)

ẍ(t)

ÿ(t)

 ,
and if we define our control u1 and u2 to be acceleration in the x and y directions respectively, then
we have

ṡ(t) = f(t, s, u) =

s3(t)

s4(t)

u1(t)

u2(t)

 . (1.7)

Next we will define an obstacle. Since we are using integration to define cost, a reasonable way
to model an obstacle in this problem would be to use a function. It would be helpful if this function
is malleable, allowing us to reposition and resize it, based on the needs of the specific situation. This
function also needs to have a large, preferably positive, value in a concentrated location, and it needs
to vanish relatively quickly. A decent selection could be a function based on an ellipse, such as this
function

C(x, y) =
W1

((x− cx)2/rx + (y − cy)2/ry)λ + 1
. (1.8)

With the function 1.8 we can manipulate the center by changing cx and cy, and we can control the
size by changing rx and ry. Changing the constant W1 allows us to change the relative penalty of
occupying the same location as the obstacle, and a reasonable value for λ will control the vanishing
rate. We will also include a term in the cost functional that weights against high acceleration. This
will allow us to model the real world more accurately, though the term we will be using is not a
perfect representation of real world acceleration limitations. Our cost functional is the following

J(u) =

∫ tf

t0

1 + C(x(t), y(t)) +W2 |u(t)|2 dt, (1.9)

where W2 > 0 defines the relative penalty of high acceleration. This functional will penalize passing
near the obstacle and high levels of acceleration.

With the cost functional defined, we can now create the Hamiltonian and the rest of our BVP.
We get the following Hamiltonian

H(t, p, s, u) = p1s3 + p2s4 + p3u1 + p4u2 −
(
1 + C(x, y) +W2 |u(t)|2

)
, (1.10)

4 Lab 1. Obstacle Avoidance

which gives the following costate ODE by equation 1.4

ṗ =

ṗ1
ṗ2
ṗ3
ṗ4

 =

Cx(x, y)

Cy(x, y)

−p1
−p2

 . (1.11)

Since we’re given Hu = 0 in equation 1.5, then we also have the following relations

u1(t) =
1

2W2
p3(t)

u2(t) =
1

2W2
p4(t).

(1.12)

Problem 2. Using the ODEs found in 1.7 and 1.11, the obstacle function 1.8, and the following
boundary conditions and parameters solve for and plot the optimal path.

t0 = 0, tf = 20

(cx, cy) = (4, 1)

(rx, ry) = (5, .5)

λ = 20

s0 =

6

1.5

0

0

, sf =

0

0

0

0

You will need to choose a W1 and W2 which allow the solver to find a valid path. If these
parameters are not chosen correctly, the solver may find a path which goes through the obstacle,
not around it. Plot the obstacle using plt.contour() to be certain path doesn’t pass through
the obstacle.

Hint: The default for a parameter of solve_bvp() called max_nodes is not large enough.
Try at least max_nodes = 30000. You may also find it helpful to use the function partial
from the module functools to preset the parameters for the functions you will be using. If
you are struggling to find viable values for W1 and W2, try W1 ∈ (1, 40) and W2 ∈ (0, 9).

5

0 1 2 3 4 5 6 7
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
y

optimal path

Figure 1.2: Solution to problem 2 for certain choice of parameters

Free Time Horizon Problems
In the previous sections and problems, we were working with BVPs that had a fixed start time t0,
and a fixed end time tf . However, we may also encounter systems that have a free end time. In order
to solve these problems we will need to make some alterations to the problem. First we will perform
a change of basis so that we can work with a fixed end time. Consider the following system

ẋ(t) = f(x(t), t) t ∈ [0, tf],

we can do the following change of basis for the time variable

t = tf t̂

=⇒ d

dt
=

d

dt̂

dt̂

dt

=⇒ d

dt
=

d

dt̂

1

tf
.

We can now define z(t̂) := x(tf t̂) which gives us the following new system

ż
(
t̂
)
= tff

(
z
(
t̂
)
, t̂
)

t̂ ∈ [0, 1].

This system can be solved in the same way we solve the fixed time horizon problems. But you may
notice that we now have an extra unknown parameter, the final time. Because of this, a free time
horizon problem will need one more boundary value to make the system solvable.

6 Lab 1. Obstacle Avoidance

So lets examine the earlier example as a free time horizon problem. We start with the ODE
system we derived from the second order equation, replacing the fixed final time with a free final
time and including the needed third boundary condition

[
y1
y2

]′
=

[
y2

cos(t)− 9y1

]
, y1(0) = 5/3, y2(0) = 5, y1(tf) = −

5

3
.

Now we make the coordinate change giving the following system

[
z1
z2

]′
= tf

[
z2

cos(t̂)− 9z1

]
, z1(0) = 5/3, z2(0) = 5, z1(1) = −

5

3
. (1.13)

Now we can solve this system using solve_bvp in python. The new argument p that we have included
in ode() and bc() is an ndarray that contains our parameter tf .

def ode(t,y,p):
''' define the ode system '''
return p[0]*np.array([y[1], np.cos(t) - 9*y[0]])

def bc(ya,yb,p):
''' define the boundary conditions '''
return np.array([ya[0] - (5/3), ya[1] - 5, yb[0] + 5/3])

give the time domain
t_steps = 100
t = np.linspace(0,1,t_steps)

give an initial guess
y0 = np.ones((2,t_steps))
p0 = np.array([6])

solve the system
sol = solve_bvp(ode, bc, t, y0, p0)

The attribute sol.p[0] will give the final time the solver found.

When plotting we need to make sure that we remember that x(tf t̂) = z(t̂), so we plot in the
following way

plt.plot(sol.p[0]*t,sol.sol(t)[0])
plt.xlabel('t')
plt.ylabel('y(t)')
plt.show()

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

2

1

0

1

2

y(
t)

Figure 1.3: The solution to 1.13

Problem 3. Solve the following boundary value problem:

y′′ + 3y = sin(t)

y(0) = 0, y(tf) =
π

2
, y′(tf) =

1

2

(√
3π cot(π

√
75)− 1

)
.

Plot your solution. What tf did the solver find?
Hint: If you are struggling to find viable values for W1 and W2, try W1 ∈ (4, 12) and

W2 = 0.1.

Free Time, Fixed Endpoint Control Problems
Now that we understand how to formulate free time horizon problems, we can modify our optimal
control BVP to become a free time horizon problem. This is actually the best way to formulate many
optimal control problems, as we usually don’t know exactly how long it takes to traverse the optimal
path. The methodology is exactly the same as we used in the last problem, we only need to find the
extra boundary value which will allow us to make the end time a free variable.

To find this extra boundary value we will use the fact that the Hamiltonian is 0 for all t along
the optimal path. It is standard to use the final time as the representative so we will assert that

H(tf , p(tf), s(tf), u(tf)) = 0. (1.14)

8 Lab 1. Obstacle Avoidance

You may notice that when you solve an optimal control problem as a free end time BVP, the
optimal path you get is different than what you found when it was a fixed end time BVP. This is
because the free end time solution actually arrives faster. The solution found in the fixed end time
formulation is the optimal path for a certain fixed end time, but it may not be the overall fastest
path that avoids the obstacle.

Problem 4. Refactor your code from problem 2 to create a free end time BVP and use a new
boundary value derived from 1.14. Plot the solution you found. What is the optimal time?

0 1 2 3 4 5 6 7
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

Solution to the Free End Time BVP
optimal path

Figure 1.4: The solution to 4

	Obstacle Avoidance

