
1 Kalman Filter

Lab Objective: Understand how to implement the standard Kalman Filter. Apply to the problem
of projectile tracking.

Measured observations are often prone to significant noise, due to restrictions on measurement
accuracy. For example, most commercial GPS devices can provide a good estimate of geolocation,
but only within a dozen meters or so. A Kalman filter is an algorithm that takes a sequence of noisy
observations made over time and attempts to get rid of the noise, producing more accurate estimates
than the original observations. To do this, the algorithm needs information about the system being
observed.

Consider the problem of tracking a projectile as it travels through the air. Short-range projec-
tiles approximately trace out parabolas, but a sensor that is recording measurements of the projectile’s
position over time will likely show a path that is much less smooth. Because we know something
about the laws of physics, we can filter out the noise in the measurements using basic Newtonian
mechanics, recovering a more accurate estimate of the projectile’s trajectory. In this lab, we will sim-
ulate measurements of a projectile and implement a Kalman filter to estimate the complete trajectory
of the projectile.

Linear Dynamical Systems
The standard Kalman filter assumes that: (1) we have a linear dynamical system, (2) the state of the
system evolves over time with some noise, and (3) we receive noisy measurements about the state of
the system at each iteration. More formally, letting xk denote the state of the system at time k, we
have

xk+1 = Fkxk +Gkuk +wk (1.1)

where Fk is a state-transition model, Gk is a control-input model, uk is a control vector, and wk

is the noise present in state k. This noise is assumed to be drawn from a multivariate Gaussian
distribution with zero mean and covariance matrix Qk. The control-input model and control vector
allow the assumption that the state can be additionally influenced by some other factor than the
linear state-transition model.

We further assume that the states are “hidden,” and we only get the noisy observations

zk = Hkxk + vk (1.2)
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2 Lab 1. Kalman Filter

where Hk is the observation model mapping the state space to the observation space, and vk is the
observation noise present at iteration k. As with the aforementioned error, we assume that this noise
is drawn from a multivariate Gaussian distribution with zero mean and covariance matrix Rk.

The dynamics stated above are all taken to be linear. Thus, for our purposes, the operators
Fk, Gk, and Hk are all matrices, and xk, uk, zk, and vk are all vectors.

We will assume that the transition and observation models, the control vector, and the noise
covariances are constant, i.e. for each k, we will replace Fk, Hk,uk, Qk, and Rk with F,H,u, Q, and
R. We will also assume that G = I is the identity matrix, so it can safely be ignored.

Problem 1. Begin implementing a KalmanFilter class by writing an initialization method
that stores the transition and observation models, noise covariances, and control vector. We
provide an interface below:

class KalmanFilter(object):
def __init__(self,F,Q,H,R,u):

"""
Initialize the dynamical system models.

Parameters
----------
F : ndarray of shape (n,n)

The state transition model.
Q : ndarray of shape (n,n)

The covariance matrix for the state noise.
H : ndarray of shape (m,n)

The observation model.
R : ndarray of shape (m,m)

The covariance matric for observation noise.
u : ndarray of shape (n,)

The control vector.
"""
pass

We now derive the linear dynamical system parameters for a projectile traveling through R2

undergoing a constant downward gravitational force of 9.8 m/s2. The relevant information needed to
describe how the projectile moves through space is its position and velocity. Thus, our state vector
has the form

x =


sx
sy
Vx

Vy

 ,

where sx and sy give the x and y coordinates of the position (in meters), and Vx and Vy give the
horizontal and vertical components of the velocity (in meters per second), respectively.

How does the system evolve from one time step to the next? Assuming each time step is 0.1
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seconds, it is easy enough to calculate the new position:

s′x = sx + 0.1Vx

s′y = sy + 0.1Vy.

Further, since the only force acting on the projectile is gravity (we are ignoring things like wind
resistance), the horizontal velocity remains constant:

V ′x = Vx.

The vertical velocity, however, does change due to the effects of gravity. From basic Newtonian
mechanics, we have

V ′y = Vy − 0.1 · 9.8.
In summary, over one time step, the state evolves from x to x′, where

x′ =


sx + 0.1Vx

sy + 0.1Vy

Vx

Vy − 0.98

 .

From this equation, you can extract the state transition model F and the control vector u.
We now turn our attention to the observation model. Imagine that a radar sensor captures

(noisy) measurements of the projectile’s position as it travels through the air. At each time step, the
radar transmits the observation z = (zx, zy) given by

zx = sx + vx

zy = sy + vy,

where (vx, vy) is a noise vector assumed to be drawn from a multivariate Gaussian with mean zero
and some known covariance. These equations indicate the appropriate choice of observation model.

Problem 2. Work out the transition and observation models F and H, along with the control
vector u, corresponding to the projectile. Assume that the noise covariances are given by

Q = 0.1 · I4
R = 5000 · I2.

Instantiate a KalmanFilter object with these values.

We now wish to simulate a sequence of states and observations from the dynamical system.
In addition to the system parameters, we need an initial state x0 to get started. Computing the
subsequent states and observations is simply a matter of following equations 1.1 and 1.2.

Problem 3. Add a method to your KalmanFilter class to generate a state and observa-
tion sequence by evolving the system from a given initial state (the function numpy.random
.multivariate_normal will be useful). To do this, implement the following:

def evolve(self,x0,N):
"""
Compute the first N states and observations generated by the Kalman ←↩
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Figure 1.1: State sequence (left) and sampling of observation sequence (right).

system.

Parameters
----------
x0 : ndarray of shape (n,)

The initial state.
N : integer

The number of time steps to evolve.

Returns
-------
states : ndarray of shape (n,N)

States 0 through N-1, given by each column.
obs : ndarray of shape (m,N)

Observations 0 through N-1, given by each column.
"""
pass

Simulate the true and observed trajectory of a projectile with initial state

x0 =


0

0

300

600

 .

Approximately 1250 time steps should be sufficient for the projectile to hit the ground (i.e. for
the y coordinate to return to 0). Your results should qualitatively match those given in Figure
1.1.

State Estimation with the Kalman Filter
The Kalman filter is a recursive estimator that smooths out the noise in real time, estimating each
current state based on the past state estimate and the current measurement. This process is done by
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repeatedly invoking two steps: Predict and Update. The predict step is used to estimate the current
state based on the previous state. The update step then combines this prediction with the current
observation, yielding a more robust estimate of the current state.

To describe these steps in detail, we need additional notation. Let

• x̂n|m be the state estimate at time n given only measurements up through time m; and

• Pn|m be an error covariance matrix, measuring the estimated accuracy of the state at time n

given only measurements up through time m.

The elements x̂k|k and Pk|k represent the state of the filter at time k, giving the state estimate
and the accuracy of the estimate.

We evolve the filter recursively, as follows:

Predict x̂k|k−1 = F x̂k−1|k−1 + u

Pk|k−1 = FPk−1|k−1F
T +Q

Update ỹk = zk −Hx̂k|k−1

Sk = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkH)Pk|k−1

The more observations we have, the greater the accuracy of these estimates becomes (i.e the
norm of the accuracy matrix converges to 0).

Problem 4. Add code to your KalmanFilter class to estimate a state sequence correspond-
ing to a given observation sequence and initial state estimate. Implement the following class
method:

def estimate(self,x,P,z):
"""
Compute the state estimates using the Kalman filter.
If x and P correspond to time step k, then z is a sequence of
observations starting at time step k+1.

Parameters
----------
x : ndarray of shape (n,)

The initial state estimate.
P : ndarray of shape (n,n)

The initial error covariance matrix.
z : ndarray of shape(m,N)

Sequence of N observations (each column is an observation).

Returns
-------
out : ndarray of shape (n,N)

Sequence of state estimates (each column is an estimate).
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Figure 1.2: State estimates together with observations and true state sequence (detailed view on the
right).

"""
pass

Returning to the projectile example, we now assume that our radar sensor has taken observa-
tions from time steps 200 through 800 (take the corresponding slice of the observations produced
in Problem 3). Using these observations, we seek to estimate the corresponding true states of the
projectile. We must first come up with a state estimate x̂200 for time step 200, and then feed this
into the Kalman filter to obtain estimates x̂201, . . . , x̂800.

Problem 5. Calculate an initial state estimate x̂200 as follows: For the horizontal and vertical
positions, simply use the observed position at time 200. For the velocity, compute the average
velocity between the observations zk and zk+1 for k = 200, . . . , 208, then average these 9 values
and take this as the initial velocity estimate. (Hint: the NumPy function diff is useful here.)

Using the initial state estimate, P200 = 106 ·Q, and your Kalman filter, compute the next
600 state estimates, i.e. compute x̂201, . . . , x̂800. Plot these state estimates as a smooth green
curve together with the radar observations (as red dots) and the entire true state sequence (as
a blue curve). Zoom in to see how well it follows the true path. Your plots should be similar
to Figure 1.2.

In the absence of observations, we can still estimate some information about the state of the
system at some future time. We can do this by recognizing that the expected state noise E [εk] = 0

at any time k. Thus, given a current state estimate x̂n|m using only measurements up through time
m, the expected state at time n+ 1 is

x̂n+1|m = F x̂n|m + u
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Figure 1.3: Predicted vs. actual point of impact (detailed view on right).

Problem 6. Add a function to your class that predicts the next k states given a current state
estimate but in the absence of observations. Do so by implementing the following function:

def predict(self,x,k):
"""
Predict the next k states in the absence of observations.

Parameters
----------
x : ndarray of shape (n,)

The current state estimate.
k : integer

The number of states to predict.

Returns
-------
out : ndarray of shape (n,k)

The next k predicted states.
"""
pass

We can use this prediction routine to estimate where the projectile will hit the surface.

Problem 7. Using the final state estimate x̂800 that you obtained in Problem 5, predict the
future states of the projectile until it hits the ground. Predicting approximately the next 450
states should be sufficient.

Plot the actual state sequence together with the predicted state sequence (as a yellow
curve), and observe how near the prediction is to the actual point of impact. Your results
should be similar to those shown in Figure 1.3.
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In the absence of observations, we can also reverse the system and iterate backward in time to
infer information about states of the system prior to measured observations. The system is reversed
by

xk = F−1(xk+1 − u− εk+1).

Considering again that E [εk] = 0 at any time k, we can ignore this term, simplifying the recursive
estimation backward in time.

Figure 1.4: Predicted vs. actual point of origin (detailed view on right).

Problem 8. Add a function to you class that rewinds the system from a given state estimate,
returning predictions for the previous states. Do so by implementing the following function:

def rewind(self,x,k):
"""
Predict the k states preceding the current state estimate x.

Parameters
----------
x : ndarray of shape (n,)

The current state estimate.
k : integer

The number of preceding states to predict.

Returns
-------
out : ndarray of shape (n,k)

The k preceding predicted states.
"""
pass

Returning to the projectile example, we can now predict the point of origin.
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Problem 9. Using your state estimate x̂250, predict the point of origin of the projectile along
with all states leading up to time step 250. Note that you may have to take a few extra time
steps to predict the point of origin. (The point of origin is the first point along the trajectory
where the y coordinate is 0.) Plot these predicted states (in cyan) together with the original
state sequence. Zoom in to see how accurate your prediction is. Your plots should be similar
to Figure 1.4.

Repeat the prediction starting with x̂600. Compare to the previous results. Which is
better? Why?
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