
1 Gibbs Sampling and
LDA

Lab Objective: Understand the basic principles of implementing a Gibbs sampler. Apply this to
Latent Dirichlet Allocation.

Gibbs Sampling
Gibbs sampling is an MCMC sampling method in which we construct a Markov chain which is used
to sample from a desired joint (conditional) distribution

P(x1, · · · , xn|y).

Often it is difficult to sample from this high-dimensional joint distribution, while it may be easy to
sample from the one-dimensional conditional distributions

P(xi|x−i,y)

where x−i = x1, · · · , xi−1, xi+1, · · · , xn.

Algorithm 1.1 Basic Gibbs Sampling Process.
1: procedure Gibbs Sampler
2: Randomly initialize x1, x2, . . . , xn.
3: for k = 1, 2, 3, . . . do
4: for i = 1, 2, . . . , n do
5: Draw x ∼ P(xi|x−i,y)

6: Fix xi = x

7: x(k) = (x1, x2, . . . , xn)

A Gibbs sampler proceeds according to Algorithm 1.1. Each iteration of the outer for loop
is a sweep of the Gibbs sampler, and the value of x(k) after a sweep is a sample. This creates an
irreducible, non-null recurrent, aperiodic Markov chain over the state space consisting of all possible
x. The unique invariant distribution for the chain is the desired joint distribution

P(x1, · · · , xn|y).

Thus, after a burn-in period, our samples x(k) are effectively samples from the desired distribution.

1

2 Lab 1. Gibbs Sampling and LDA

Consider the dataset of N scores from a calculus exam in the file examscores.npy. We believe
that the spread of these exam scores can be modeled with a normal distribution of mean µ and
variance σ2. Because we are unsure of the true value of µ and σ2, we take a Bayesian approach and
place priors on each parameter to quantify this uncertainty:

µ ∼ N(ν, τ2) (a normal distribution)
σ2 ∼ IG(α, β) (an inverse gamma distribution)

Letting y = (y1, . . . , yN) be the set of exam scores, we would like to update our beliefs of µ and σ2

by sampling from the posterior distribution

P(µ, σ2|y, ν, τ2, α, β).

Sampling directly can be difficult. However, we can easily sample from the following conditional
distributions:

P(µ|σ2,y, ν, τ2, α, β) = P(µ|σ2,y, ν, τ2)

P(σ2|µ,y, ν, τ2, α, β) = P(σ2|µ,y, α, β)

The reason for this is that these conditional distributions are conjugate to the prior distributions,
and hence are part of the same distributional families as the priors. In particular, we have

P(µ|σ2,y, ν, τ2) = N(µ∗, (σ∗)2)

P(σ2|µ,y, α, β) = IG(α∗, β∗),

where

(σ∗)2 =

(
1

τ2
+
N

σ2

)−1

µ∗ = (σ∗)2

(
ν

τ2
+

1

σ2

N∑
i=1

yi

)

α∗ = α+
N

2

β∗ = β +
1

2

N∑
i=1

(yi − µ)2

We have thus set this up as a Gibbs sampling problem, where we have only to alternate between
sampling µ and sampling σ2. We can sample from a normal distribution and an inverse gamma
distribution as follows:

>>> from math import sqrt
>>> from scipy.stats import norm
>>> from scipy.stats import invgamma
>>> mu = 0. # the mean
>>> sigma2 = 9. # the variance
>>> normal_sample = norm.rvs(mu, scale=sqrt(sigma))
>>> alpha = 2.
>>> beta = 15.
>>> invgamma_sample = invgamma.rvs(alpha, scale=beta)

Note that when sampling from the normal distribution, we need to set the scale parameter to the
standard deviation, not the variance.

3

Problem 1. Write a function that accepts data y, prior parameters ν, τ2, α, and β, and an
integer n. Use Gibbs sampling to generate n samples of µ and σ2 for the exam scores problem.

Test your sampler with priors ν = 80, τ2 = 16, α = 3, and β = 50, collecting 1000

samples. Plot your samples of µ and your samples of σ2. They should each to converge quickly.

We’d like to look at the posterior marginal distributions for µ and σ2. To plot these from the
samples, use a kernel density estimator from scipy.stats. If our samples of µ are called mu_samples,
then we can do this with the following code.

>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> from scipy.stats import gaussian_kde

>>> mu_kernel = gaussian_kde(mu_samples)
>>> x = np.linspace(min(mu_samples) - 1, max(mu_samples) + 1, 200)
>>> plt.plot(x, mu_kernel(x))
>>> plt.show()

80 82 84 86 88 90 92
0.00

0.05

0.10

0.15

0.20

0.25

(a) Posterior distribution of µ.

40 60 80 100 120 140 160 180
0.000

0.005

0.010

0.015

0.020

(b) Posterior distribution of σ2.

Figure 1.1: Posterior marginal probability densities for µ and σ2.

Keep in mind that the plots above are of the posterior distributions of the parameters, not of
the scores. If we would like to compute the posterior distribution of a new exam score ỹ given our
data y and prior parameters, we compute what is known as the posterior predictive distribution:

P(ỹ|y, λ) =

∫
Θ

P(ỹ|Θ)P(Θ|y, λ)dΘ

where Θ denotes our parameters (in our case µ and σ2) and λ denotes our prior parameters (in our
case ν, τ2, α, and β).

Rather than actually computing this integral for each possible ỹ, we can do this by sampling
scores from our parameter samples. In other words, sample

ỹ(t) ∼ N(µ(t), σ
2
(t))

4 Lab 1. Gibbs Sampling and LDA

for each sample pair µ(t), σ
2
(t). Now we have essentially drawn samples from our posterior predictive

distribution, and we can use a kernel density estimator to plot this distribution from the samples.

60 70 80 90 100 110
0.00

0.01

0.02

0.03

0.04

Figure 1.2: Predictive posterior distribution of exam scores.

Problem 2. Plot the kernel density estimators for the posterior distributions of µ and σ2. You
should get plots similar to those in Figure 1.1.

Next, use your samples of µ and σ2 to draw samples from the posterior predictive distri-
bution. Plot the kernel density estimator of your sampled scores. Compare your plot to Figure
1.2.

Latent Dirichlet Allocation
Gibbs sampling can be applied to an interesting problem in natural language processing (NLP):
determining which topics are prevalent in a document. Latent Dirichlet Allocation (LDA) is a gen-
erative model for a collection of text documents. It supposes that there is some fixed vocabulary
(composed of V distinct terms) and K different topics, each represented as a probability distribution
φk over the vocabulary, each with a Dirichlet prior β. This means φk,v is the probability that topic
k is represented by vocabulary term v.

With the vocabulary and topics chosen, the LDA model assumes that we have a set of M
documents (each “document” may be a paragraph or other section of the text, rather than a “full”
document). The m-th document consists of Nm words, and a probability distribution θm over the
topics is drawn from a Dirichlet distribution with parameter α. Thus θm,k is the probability that
document m is assigned the label k. If φk,v and θm,k are viewed as matrices, their rows sum to one.

We will now iterate through each document in the same manner. Assume we are working on
document m, which you will recall contains Nm words. For word n, we first draw a topic assignment
zm,n from the categorical distribution θm, and then we draw a word wm,n from the categorical
distribution φzm,n

. Throughout this implementation, we assume α and β are scalars. In summary,
we have

1. Draw φk ∼ Dir(β) for 1 ≤ k ≤ K.

5

2. For 1 ≤ m ≤M :

(a) Draw θm ∼ Dir(α).

(b) Draw zm,n ∼ Cat(θm) for 1 ≤ n ≤ Nm.

(c) Draw wm,n ∼ Cat(φzm,n) for 1 ≤ n ≤ Nm.

We end up with n words which represent documentm. Note that these words are not necessarily
distinct from one another; indeed, we are most interested in the words that have been repeated the
most.

This is typically depicted with graphical plate notation as in Figure 1.3.

1 ≤ n ≤ Nm

1 ≤ m ≤M

1 ≤ k ≤ K

wm,n

zm,n

~θm

~α

~φk

~β

Figure 1.3: Graphical plate notation for LDA text generation.

In the plate model, only the variables wm,n are shaded, signifying that these are the only
observations visible to us; the rest are latent variables. Our goal is to estimate each φk and each
θm. This will allow us to understand what each topic is, as well as understand how each document
is distributed over the K topics. In other words, we want to predict the topic of each document, and
also which words best represent this topic. We can estimate these well if we know zm,n for each m,n,
collectively referred to as z. Thus, we need to sample z from the posterior distribution P(z|w, α, β),

where w is the collection words in the text corpus. Unsurprisingly, it is intractable to sample directly
from the joint posterior distribution. However, letting z−(m,n) = z\{zm,n}, the conditional posterior
distributions

P(zm,n = k|z−(m,n),w, α, β)

have nice, closed form solutions, making them easy to sample from.

These conditional distributions have the following form:

P(zm,n = k|z−(m,n),w, α, β) ∝
(n

−(m,n)
(k,m,·) + α)(n

−(m,n)
(k,·,wm,n) + β)

n
−(m,n)
(k,·,·) + V β

6 Lab 1. Gibbs Sampling and LDA

where

n(k,m,·) = the number of words in document m assigned to topic k
n(k,·,v) = the number of times term v = wm,n is assigned to topic k
n(k,·,·) = the number of times topic k is assigned in the corpus

n
−(m,n)
(k,m,·) = n(k,m,·) − 1zm,n=k

n
−(m,n)
(k,·,v) = n(k,·,v) − 1zm,n=k

n
−(m,n)
(k,·,·) = n(k,·,·) − 1zm,n=k

Thus, if we simply keep track of these count matrices, then we can easily create a Gibbs sampler
over the topic assignments. This is actually a particular class of samplers known as collapsed Gibbs
samplers, because we have collapsed the sampler by integrating out θ and φ.

We have provided for you the structure of a Python object LDACGS with several methods, listed
at the end of the lab. The object is already defined to have attributes n_topics, documents, vocab,
alpha, and beta, where vocab is a list of strings (terms), and documents is a list of dictionaries (a
dictionary for each document). Each entry in dictionary m is of the form n : w, where w is the index
in vocab of the nth word in document m.

Throughout this lab we will guide you through writing several more methods in order to imple-
ment the Gibbs sampler. The first step is to initialize our assignments, and create the count matrices
n(k,m,·), n(k,·,v) and vector n(k,·,·).

Problem 3. Complete the method initialize(). By randomly assigning initial topics, fill
in the count matrices and topic assignment dictionary. In this method, you will initialize the
count matrices (among other things). Note that the notation provided in the code is slightly
different than that used above. Be sure to understand how the formulae above connect with
the code.

To be explicit, you will need to initialize nmz, nzw, and nz to be zero arrays of the correct
size. Then, in the second for loop, you will assign z to be a random integer in the correct range
of topics. In the increment step, you need to figure out the correct indices to increment by one
for each of the three arrays. Finally, assign topics as given.

The next method we need to write fully outlines a sweep of the Gibbs sampler.

Problem 4. Complete the method _sweep(), which needs to iterate through each word of each
document. It should call on the method _conditional() to get the conditional distribution at
each iteration.

Note that the first part of this method will undo what initialize() did. Then we will use
the conditional distribution (instead of the uniform distribution we used previously) to pick a
more accurate topic assignment. Finally, the latter part repeats what we did in initialize(),
but does so using this more accurate topic assignment.

We are now prepared to write the full Gibbs sampler.

7

Problem 5. Complete the method sample(). The argument filename is the name and loca-
tion of a .txt file, where each line is considered a document. The corpus is built by method
buildCorpus, and stopwords are removed (if argument stopwords is provided). Burn in the
Gibbs sampler, computing and saving the log-likelihood with the method _loglikelihood.
After the burn in, iterate further, accumulating your count matrices, by adding nzw and nmz
to total_nzw and total_nmz respectively, where you only add every sample_rateth iteration.
Also save each log-likelihood.

You should now have a working Gibbs sampler to perform LDA inference on a corpus. Let’s
test it out on one of Ronald Reagan’s State of the Union addresses, found in reagan.txt.

Problem 6. Create an LDACGS object with 20 topics, letting α and β be the default values.
Run the Gibbs sampler, with a burn in of 100 iterations, accumulating 10 samples, only keeping
the results of every 10th sweep. Use stopwords.txt as the stopwords file.

Plot the log-likelihoods. How long did it take to burn in?
We can estimate the values of each φk and each θm as follows:

θ̂m,k =
n(k,m,·) + α

K · α+
∑K

k=1 n(k,m,·)

φ̂k,v =
n(k,·,v) + β

V · β +
∑V

v=1 n(k,·,v)

We have provided methods phi and theta that do this for you. We often examine the topic-
term distributions φk by looking at the n terms with the highest probability, where n is small (say
10 or 20). We have provided a method topterms which does this for you.

Problem 7. Using the methods described above, examine the topics for Reagan’s addresses.
As best as you can, come up with labels for each topic. If ntopics = 20 and n = 10, we will
get the top 10 words that represent each of the 20 topics; for each topic, decide what these ten
words jointly represent.

We can use θ̂ to find the paragraphs in Reagan’s addresses that focus the most on each topic.
The documents with the highest values of θ̂k are those most heavily focused on topic k. For example,
if you chose the topic label for topic p to be the Cold War, you can find the five highest values in θ̂p,
which will tell you which five paragraphs are most centered on the Cold War.

Let’s take a moment to see what our Gibbs sampler has accomplished. By simply feeding in a
group of documents, and with no human input, we have found the most common topics discussed,
which are represented by the words most frequently used in relation to that particular topic. The
only work that the user has done is to assign topic labels, saying what the words in each group have
in common. As you may have noticed, however, these topics may or may not be relevant topics. You
might have noticed that some of the most common topics were simply English particles (words such
as a, the, an) and conjunctions (and, so, but). Industrial grade packages can effectively remove such
topics so that they are not included in the results.

8 Lab 1. Gibbs Sampling and LDA

Additional Material

LDACGS Source Code

class LDACGS:
"""Do LDA with Gibbs Sampling."""

def __init__(self, n_topics, alpha=0.1, beta=0.1):
"""Initialize system parameters."""
self.n_topics = n_topics
self.alpha = alpha
self.beta = beta

def buildCorpus(self, filename, stopwords_file=None):
"""Read the given filename and build the vocabulary."""
with open(filename, 'r') as infile:

doclines = [line.rstrip().lower().split(' ') for line in infile]
n_docs = len(doclines)
self.vocab = list({v for doc in doclines for v in doc})
if stopwords_file:

with open(stopwords_file, 'r') as stopfile:
stops = stopfile.read().split()

self.vocab = [x for x in self.vocab if x not in stops]
self.vocab.sort()

self.documents = []
for i in range(n_docs):

self.documents.append({})
for j in range(len(doclines[i])):

if doclines[i][j] in self.vocab:
self.documents[i][j] = self.vocab.index(doclines[i][j])

def initialize(self):
"""Initialize the three count matrices."""
self.n_words = len(self.vocab)
self.n_docs = len(self.documents)

Initialize the three count matrices.
The (i,j) entry of self.nmz is the number of words in document i ←↩

assigned to topic j.
self.nmz = np.zeros((self.n_docs, self.n_topics))
The (i,j) entry of self.nzw is the number of times term j is assigned←↩

to topic i.
self.nzw = np.zeros((self.n_topics, self.n_words))
The (i)-th entry is the number of times topic i is assigned in the ←↩

corpus.
self.nz = np.zeros(self.n_topics)

Initialize the topic assignment dictionary.
self.topics = {} # key-value pairs of form (m,i):z

9

for m in range(self.n_docs):
for i in self.documents[m]:

Get random topic assignment, i.e. z = ...
Increment count matrices
Store topic assignment, i.e. self.topics[(m,i)]=z
raise NotImplementedError("Problem 3 Incomplete")

def sample(self,filename, burnin=100, sample_rate=10, n_samples=10, ←↩
stopwords=None):
self.buildCorpus(filename, stopwords)
self.initialize()
self.total_nzw = np.zeros((self.n_topics, self.n_words))
self.total_nmz = np.zeros((self.n_docs, self.n_topics))
self.logprobs = np.zeros(burnin + sample_rate*n_samples)
for i in range(burnin):

Sweep and store log likelihood.
raise NotImplementedError("Problem 5 Incomplete")

for i in range(n_samples*sample_rate):
Sweep and store log likelihood
raise NotImplementedError("Problem 5 Incomplete")
if not i % sample_rate:

accumulate counts
raise NotImplementedError("Problem 5 Incomplete")

def phi(self):
phi = self.total_nzw + self.beta
self._phi = phi / np.sum(phi, axis=1)[:,np.newaxis]

def theta(self):
theta = self.total_nmz + self.alpha
self._theta = theta / np.sum(theta, axis=1)[:,np.newaxis]

def topterms(self,n_terms=10):
self.phi()
self.theta()
vec = np.atleast_2d(np.arange(0,self.n_words))
topics = []
for k in range(self.n_topics):

probs = np.atleast_2d(self._phi[k,:])
mat = np.append(probs,vec,0)
sind = np.array([mat[:,i] for i in np.argsort(mat[0])]).T
topics.append([self.vocab[int(sind[1,self.n_words - 1 - i])] for i ←↩

in range(n_terms)])
return topics

def toplines(self,n_lines=5):
lines = np.zeros((self.n_topics,n_lines))
for i in range(self.n_topics):

10 Lab 1. Gibbs Sampling and LDA

args = np.argsort(self._theta[:,i]).tolist()
args.reverse()
lines[i,:] = np.array(args)[0:n_lines] + 1

return lines

def _removeStopwords(self, stopwords):
return [x for x in self.vocab if x not in stopwords]

def _conditional(self, m, w):
dist = (self.nmz[m,:] + self.alpha) * (self.nzw[:,w] + self.beta) / (←↩

self.nz + self.beta*self.n_words)
return dist / np.sum(dist)

def _sweep(self):
for m in range(self.n_docs):

for i in self.documents[m]:
Retrieve vocab index for i-th word in document m.
Retrieve topic assignment for i-th word in document m.
Decrement count matrices.
Get conditional distribution.
Sample new topic assignment.
Increment count matrices.
Store new topic assignment.
raise NotImplementedError("Problem 4 Incomplete")

def _loglikelihood(self):
lik = 0

for z in range(self.n_topics):
lik += np.sum(gammaln(self.nzw[z,:] + self.beta)) - gammaln(np.sum(←↩

self.nzw[z,:] + self.beta))
lik -= self.n_words * gammaln(self.beta) - gammaln(self.n_words*←↩

self.beta)

for m in range(self.n_docs):
lik += np.sum(gammaln(self.nmz[m,:] + self.alpha)) - gammaln(np.sum←↩

(self.nmz[m,:] + self.alpha))
lik -= self.n_topics * gammaln(self.alpha) - gammaln(self.n_topics*←↩

self.alpha)

return lik

	Gibbs Sampling and LDA

