
1 Dynamic
Programming

Lab Objective: Sequential decision making problems are a class of problems in which the current
choice depends on future choices. They are a subset of Markov decision processes, an important
class of problems with applications in business, robotics, and economics. Dynamic programming is a
method of solving these problems that optimizes the solution by breaking the problem down into steps
and optimizing the decision at each time period. In this lab we use dynamic programming to solve
two classic dynamic optimization problems.

The Marriage Problem
Many dynamic optimization problems can be classified as optimal stopping problems, where the goal
is to determine at what time to take an action to maximize the expected reward. For example,
how many people should you date before you get married? Or when hiring a secretary, how many
people should you interview before hiring the current interviewee? These problems try to determine
at which person t to stop in order to maximize the chance of getting the best candidate.

For instance, let N be the number of people you could date. After dating each person, you can
either marry them or move on; you can’t resume a relationship once it ends. In addition, you can
rank your current relationship to all of the previous options, but not to future ones. The goal is to
find the policy that maximizes the probability of choosing the best marriage partner. This policy
may not always choose the best candidate, but it should get an almost-best candidate most of the
time.

Let V (t− 1) be the probability that the best marriage partner is person t, assuming we didn’t
choose the first t − 1 candidates while using an optimal policy. In other words, after dating t − 1

people, you want to know the probability that the tth person is the one you should marry. Note that
the probability that the tth person is the best candidate is 1

t and the probability that they aren’t is
t−1
t . If the tth person is not the best out of the first t, then the probability they are the best overall

is 0 and the probability they are not is V (t). If the tth person is the best out of the first t, then the
probability they are the best overall is t

N and the probability they are not is V (t).
By Bellman’s optimality equations,

V (t− 1) =
t− 1

t
max {0, V (t)}+ 1

t
max

{
t

N
, V (t)

}
= max

{
t− 1

t
V (t) +

1

N
,V (t)

}
. (1.1)

Notice that (1.1) implies that V (t− 1) ≥ V (t) for all t ≤ N . Hence, the probability of selecting
the best match V (t) is non-increasing. Conversely, P (t is best overall|t is best out of the first t) =

1
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t
N is strictly increasing. Therefore, there is some t0, called the optimal stopping point, such that
V (t) ≤ t

N for all t ≥ t0. After t0 relationships, we choose the next partner who is better than all of
the previous ones. We can write (1.1) as

V (t− 1) =

{
V (t0) t < t0,
t−1
t V (t) + 1

N t ≥ t0.

The goal of an optimal stopping problem is to find t0, which we can do by backwards induction.
We start at the final candidate, who always has probability 0 of being the best overall if they
are not the best so far, and work our way backwards, computing the expected value V (t), for
t = N,N − 1, . . . , 1.

If N = 4, we have

V (4) = 0,

V (3) = max

{
3

4
V (4) +

1

4
, 0

}
= .25,

V (2) = max

{
2

3
V (3) +

1

4
, .25

}
= .4166,

V (1) = max

{
1

2
V (2) +

1

4
, .4166

}
= .4583.

In this case, the maximum expected value is .4583 and the stopping point is t = 1. It is also useful
to look at the percent of possible candidates you should pass over before selecting a candidate. This
is called the optimal stopping percentage, which in this case is 1/4 = .25. After passing over (and
observing) the optimal percentage of candidates, the first candidate that is better than the candidates
you observed should be selected1.

Problem 1. Write a function that accepts a number of candidates N . Calculate the expected
values of choosing candidate t for t = 1, 2, . . . , N .

Return the highest expected value V (t0) and the optimal stopping point t0. (Hint: Python
starts indices at 0, so you may need to adjust your indexing before returning the optimal
stopping point.)

Check your answer for N = 4 with the example detailed above.

Problem 2. Write a function that takes in an integerM and runs your function from Problem
1 for each N = 3, 4, . . . ,M . Graph the optimal stopping percentage of candidates (t0/N)
to interview and the maximum probability V (t0) against N . Return the optimal stopping
percentage for M .

The optimal stopping percentage for M = 1000 is .368.

Both the stopping time and the probability of choosing the best person converge to 1
e ≈ .36788.

Then to maximize the chance of having the best marriage, you should date at least N
e people be-

fore choosing the next best person. This famous problem is also known as the secretary prob-
lem, the sultan’s dowry problem, and the best choice problem. For more information, see https:
//en.wikipedia.org/wiki/Secretary_problem.

1For examples and a more comprehensive explanation, see https://www.americanscientist.org/article/
knowing-when-to-stop.

https://en.wikipedia.org/wiki/Secretary_problem
https://en.wikipedia.org/wiki/Secretary_problem
https://www.americanscientist.org/article/knowing-when-to-stop
https://www.americanscientist.org/article/knowing-when-to-stop
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The Cake Eating Problem

Imagine you are given a cake. How do you eat it to maximize your enjoyment? Some people may
prefer to eat all of their cake at once and not save any for later. Others may prefer to eat a little bit
at a time. If we are to consume a cake of size W over T + 1 time periods, then our consumption at
each step is represented as a vector

c =
[
c0 c1 · · · cT

]T
,

where

T∑
i=0

ci =W.

This vector is called a policy vector and describes how much cake is eaten at each time period.
The enjoyment of eating a slice of cake is represented by a utility function. For some amount of
consumption ci ∈ [0,W ], the utility gained is given by u(ci).

For this lab, we assume the utility function satisfies u(0) = 0, that W = 1, and that W is cut
into N equally-sized pieces so that each ci must be of the form i

N for some integer 0 ≤ i ≤ N .

Discount Factors

A person or firm typically has a time preference for saving or consuming. For example, a dollar
today can be invested and yield interest, whereas a dollar received next year does not include the
accrued interest. Since cake gets stale as it gets older, we assume that cake in the present yields
more utility than cake in the future. We can model this by multiplying future utility by a discount
factor β ∈ (0, 1). For example, if we were to consume c0 cake at time 0 and c1 cake at time 1, with
c0 = c1 then the utility gained at time 0 is larger than the utility at time 1:

u(c0) > βu(c1).

The total utility for eating the cake is

T∑
t=0

βtu(ct).
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Figure 1.1: Plots for various policies with u(x) =
√
x and β = 0.9. Policy 1 eats all of the cake in the

first step while policy 2 eats all of the cake in the last step. Their difference in utility demonstrate
the effect of the discount factor on waiting to eat. Policy 3 eats the same amount of cake at each
step, while policy 4 begins by eating .4 of the cake, then .3, .2, and .1.

The Value Function
The cake eating problem is an optimization problem where we maximize utility.

max
c

T∑
t=0

βtu(ct) (1.2)

subject to
T∑

t=0

ct =W

ct ≥ 0.

One way to solve it is with the value function. The value function V (a, b,W ) gives the utility
gained from following an optimal policy from time a to time b.

V (a, b,W ) = max
c

b∑
t=a

βtu(ct)

subject to
b∑

t=a

ct =W

ct ≥ 0.

V (0, T,W ) gives how much utility we gain in T days and is the same as Equation 1.2.
Let Wt represent the total amount of cake left at time t. Observe that Wt+1 ≤ Wt for all t,

because our problem does not allow for the creation of more cake. Notice that V (t+1, T,Wt+1) can
be represented by βV (t, T − 1,Wt+1), which is the value of eating Wt+1 cake later. Then we can
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express the value function as the sum of the utility of eating Wt −Wt+1 cake now and Wt+1 cake
later.

V (t, T,Wt) = max
Wt+1

(u(Wt −Wt+1) + βV (t, T − 1,Wt+1)) (1.3)

where u(Wt −Wt+1) is the value gained from eating Wt −Wt+1 cake at time t.

Let w =
[
0 1

N · · · N−1
N 1

]T
. We define the consumption matrix C by Cij = u(wi − wj).

Note that C is an (N +1)× (N +1) lower triangular matrix since we assume j ≤ i; we can’t consume
more cake than we have. The consumption matrix will help solve the value function by calculating
all possible value of u(Wt −Wt+1) at once. At each time t, Wt can only have N + 1 values, which
will be represented as wi = i

N , which is i pieces of cake remaining. For example, if N = 4, then
w = [0, .25, .5, .75, 1]T, and w3 = 0.75 represents having three pieces of cake left. In this case, we get
the following consumption matrix.

0 0 0 0 0

u(0.25) 0 0 0 0

u(0.5) u(0.25) 0 0 0

u(0.75) u(0.5) u(0.25) 0 0

u(1) u(0.75) u(0.5) u(0.25) 0

 .

Problem 3. Write a function that accepts the number of equal sized pieces N that divides the
cake and a utility function u(x). Assume W = 1. Create a partition vector w whose entries
correspond to possible amounts of cake. Return the consumption matrix.

Solving the Optimization Problem

Initially we do not know how much cake to eat at t = 0: should we eat one piece of cake (w1),
or perhaps all of the cake (wN )? It may not be obvious which option is best and that option may
change depending on the discount factor β. Instead of asking how much cake to eat at some time
t, we ask how valuable wi cake is at time t. As mentioned above, V (t, T − 1,Wt+1) in 1.3 is a new
value function problem with a = t, b = T − 1, and W = Wt+1, making 1.3 a recursion formula. By
using the optimal value of the value function in the future, V (t, T − 1,Wt+1), we can determine the
optimal value for the present, V (t, T,Wt). V (t, T,Wt) can be solved by trying each possible Wt+1

and choosing the one that gives the highest utility.
The (N+1)×(T+1) matrix A that solves the value function is called the value function matrix.

Aij is the value of having wi cake at time j. A0j = 0 because there is never any value in having w0

cake, i.e. u(w0) = u(0) = 0.
We start at the last time period. Since there is no value in having any cake left over when time

runs out, the decision at time T is obvious: eat the rest of the cake. The amount of utility gained
from having wi cake at time T is given by u(wi). So AiT = u(wi). Written in the form of (1.3),

AiT = V (0, 0, wi) = max
wj

(u(wi − wj) + βV (0,−1, wj)) = u(wi). (1.4)

This happens because V (0,−1, wj) = 0. As mentioned, there is no value in saving cake so this
equation is maximized when wj = 0. All possible values of wi are calculated so that the value of
having wi cake at time T is known.
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Achtung!

Given a time interval from t = 0 to t = T the utility of waiting until time T to eat wi cake
is actually βTu(Wi). However, through backwards induction, the problem is solved backwards
by beginning with t = T as an isolated state and calculating its value. This is why the value
function above is V (0, 0,Wi) and not V (T, T,Wi).

For example, the following matrix results with T = 3, N = 4, and β = 0.9.
0 0 0 u(0)

0 0 0 u(0.25)

0 0 0 u(0.5)

0 0 0 u(0.75)

0 0 0 u(1)

 .

Problem 4. Write a function that accepts a stopping time T , a number of equal sized pieces
N that divides the cake, a discount factor β, and a utility function u(x). Return the value
function matrix A for t = T (the matrix should have zeros everywhere except the last column).
Return a matrix of zeros for the policy matrix P .

Next, we use the fact that AjT = V (0, 0, wj) to evaluate the T −1 column of the value function
matrix, Ai(T−1), by modifying (1.4) as follows,

Ai(T−1) = V (0, 1, wi) = max
wj

(u(wi − wj) + βV (0, 0, wj)) = max
wj

(u(wi − wj) + βAjT )) . (1.5)

Remember that there is a limited set of possibilities for wj , and we only need to consider options
such that wj ≤ wi. Instead of doing these one by one for each wi, we can compute the options for
each wi simultaneously by creating a matrix. This information is stored in an (N + 1) × (N + 1)

matrix known as the current value matrix, or CV t, where the (ij)th entry is the value of eating
wi − wj pieces of cake at time t and saving j pieces of cake until the next period. For t = T − 1,

CV T−1
ij = u(wi − wj) + βAjT . (1.6)

The largest entry in the ith row of CV T−1 is the optimal value that the value function can
attain at T −1, given that we start with wi cake. The maximal values of each row of CV T−1 become
the column of the value function matrix, A, at time T − 1.

Achtung!

The notation CV t does not mean raising the matrix to the tth power; rather, it indicates what
time period we are in. All of the CV t could be grouped together into a three-dimensional
matrix, CV , that has dimensions (N + 1) × (N + 1) × (T + 1). Although this is possible, we
will not use CV in this lab, and will instead only consider CV t for any given time t.

The following matrix is CV 2 where T = 3, β = .9, N = 4, and u(x) =
√
x. The maximum

value of each row, circled in red, is used in the 3rd column of A. Remember that A’s column index
begins at 0, so the 3rd column represents j = 2.
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CV 2 =

0 0 0 0 0

0.5 0.45 0 0 0

0.707 0.95 0.636 0 0

0.866 1.157 1.136 0.779 0

1 1.316 1.343 1.279 0.9




Now that the column of A corresponding to t = T−1 has been calculated, we repeat the process

for T − 2 and so on until we have calculated each column of A. In summary, at each time step t, find
CV t and then set Ait as the maximum value of the ith row of CV t. Generalizing (1.5) and (1.6)
shows

CV t
ij = u(wi − wj) + βAj(t+1). Ait = max

j

(
CV t

ij

)
. (1.7)

The full value function matrix corresponding to the example is below. The maximum value in
the value function matrix is the maximum possible utility to be gained.

A =


0 0 0 0

0.5 0.5 0.5 0.5

0.95 0.95 0.95 0.707

1.355 1.355 1.157 0.866

1.7195 1.562 1.343 1

 .

Figure 1.2: The value function matrix where T = 3, β = .9, N = 4, and u(x) =
√
x. The bottom left

entry indicates the highest utility that can be achieved is 1.7195.

Problem 5. Complete your function from Problem 4 so it returns the entire value function
matrix. Starting from the next to last column, iterate backwards by

• calculating the current value matrix for time t using (1.7),

• finding the largest value in each row of the current value matrix, and

• filling in the corresponding column of A with these values.

(Hint: Use axis arguments.)

Solving for the Optimal Policy

With the value function matrix constructed, the optimization problem is solved in some sense. The
value function matrix contains the maximum possible utility to be gained. However, it is not im-
mediately apparent what policy should be followed by only inspecting the value function matrix A.
The (N + 1)× (T + 1) policy matrix, P , is used to find the optimal policy. The (ij)th entry of the
policy matrix indicates how much cake to eat at time j if we have i pieces of cake. Like A and CV ,
i and j begin at 0.
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The last column of P is calculated similarly to last column of A. PiT = wi, because at time T
we know that the remainder of the cake should be eaten. Recall that the column of A corresponding
to t was calculated by the maximum values of CV t. The column of P for time t is calculated by
taking wi − wj , where j is the smallest index corresponding to the maximum value of CV t,

Pit = wi − wj .

where j = {min{j} | CV t
ij ≥ CV t

ik ∀ k ∈ [0, 1, . . . , N ] }

Recall CV 2 in our example with T = 3, β = .9, N = 4, and u(x) =
√
x above.

CV 2 =

0 0 0 0 0

0.5 0.45 0 0 0

0.707 0.95 0.636 0 0

0.866 1.157 1.136 0.779 0

1 1.316 1.343 1.279 0.9




To calculate P12, we look at the second row (i = 1) in CV 2. The maximum, .5, occurs at CV 2

10,
so j = 0 and P12 = w1 − w0 = .25− 0 = .25. Similarly, P42 = w4 − w2 = 1− .5 = .5. Continuing in
this manner,

P =

0 0 0 0

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.5

0.25 0.25 0.5 0.75

0.25 0.5 0.5 1.




Given that the rows of P are the slices of cake available and the columns are the time intervals,

we find the policy by starting in the bottom left corner, PN0, where there are N slices of cake
available and t = 0. This entries tells us what percentage of the N slices of cake we should eat. In
the example, this entry is .25, telling us we should eat 1 slice of cake at t = 0. Thus, when t = 1

we have N − 1 slices of cake available, since we ate 1 slice of cake. We look at the entry at P(N−1)1,
which has value .25. So we eat 1 slice of cake at t = 1. We continue this pattern to find the optimal
policy c =

[
.25 .25 .25 .25

]
.

Achtung!

The optimal policy will not always be a straight diagonal in the example above. For example,
if the bottom left corner had value .5, then we should eat 2 pieces of cake instead of 1. Then
the next entry we should evaluate would be P(N−2)1 in order to determine the optimal policy.

To verify the optimal policy found with P , we can use the value function matrix A. By
expanding the entires of A, we can see that the optimal policy does give the maximum value.
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0 0 0 0

√
0.25

√
0.25

√
0.25

√
0.25

√
0.25 + β

√
0.25

√
0.25 + β

√
0.25

√
0.25 + β

√
0.25

√
0.5

√
0.25 + β

√
0.25 + β2

√
0.25

√
0.25 + β

√
0.25 + β2

√
0.25

√
0.5 + β

√
0.25

√
0.75

√
0.25 + β

√
0.25 + β2

√
0.25 + β3

√
0.25

√
0.5 + β

√
0.25 + β2

√
0.25

√
0.5 + β

√
0.5

√
1



A =

Problem 6. Modify your function from Problem 4 to determine the policy matrix. Initialize
the matrix as zeros and fill it in starting from the last column at the same time that you
calculate the value function matrix.
(Hint: You may find np.argmax() useful.)

Problem 7. Write a function find_policy() that will find the optimal policy for the stopping
time T , a cake of size 1 split into N pieces, a discount factor β, and the utility function u.
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