
1 Iterative Solvers

Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of
parameters. Solving such systems with Gaussian elimination or matrix factorizations could require
trillions of floating point operations (FLOPs), which is of course infeasible. Solutions of large systems
must therefore be approximated iteratively. In this lab we implement three popular iterative methods
for solving large systems: Jacobi, Gauss-Seidel, and Successive Over-Relaxation.

Iterative methods are often useful to solve large systems of equations. In this lab, let x(k) denote
the kth iteration of the iterative method for solving the problem Ax = b for x. Furthermore, let xi

be the ith component of x so that x
(k)
i is the ith component of x in the kth iteration. Like other

iterative methods, there are two stopping parameters: a very small ε > 0 and an integer N ∈ N.
Iterations continue until either

‖x(k−1) − x(k)‖ < ε or k > N. (1.1)

The Jacobi Method
The Jacobi Method is a simple but powerful method used for solving certain kinds of large linear
systems. The main idea is simple: solve for each variable in terms of the others, then use the previous
values to update each approximation. As a (very small) example, consider the 3× 3

2x1 − x3 = 3,

−x1 + 3x2 + 2x3 = 3,

+ x2 + 3x3 = −1.

Solving the first equation for x1, the second for x2, and the third for x3 yields

x1 = 1
2 (3 + x3),

x2 = 1
3 (3 + x1 − 2x3),

x3 = 1
3 (−1− x2).

Now begin with an initial guess x(0) = [x
(0)
1 , x

(0)
2 , x

(0)
3 ]T = [0, 0, 0]T. To compute the first

approximation x(1), use the entries of x(0) as the variables on the right side of the previous equations:

x
(1)
1 = 1

2 (3 + x
(0)
3 ) = 1

2 (3 + 0) = 3
2 ,

x
(1)
2 = 1

3 (3 + x
(0)
1 − 2x

(0)
3 ) = 1

3 (3 + 0− 0) = 1,

x
(1)
3 = 1

3 (−1− x
(0)
2 ) = 1

3 (−1− 0) = − 1
3 .

1
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Thus x(1) = [ 32 , 1,−
1
3 ]

T. Computing x(2) is similar:

x
(2)
1 = 1

2 (3 + x
(1)
3 ) = 1

2 (3−
1
3 ) = 4

3 ,

x
(2)
2 = 1

3 (3 + x
(1)
1 − 2x

(1)
3 ) = 1

3 (3 +
3
2 + 2

3 ) = 31
18 ,

x
(2)
3 = 1

3 (−1− x
(1)
2 ) = 1

3 (−1− 1) = − 2
3 .

The process is repeated until at least one of the two stopping criteria in (1.1) is met. For this
particular problem, convergence to 8 decimal places (ε = 10−8) is reached in 29 iterations.

x
(k)
1 x

(k)
2 x

(k)
3

x(0) 0 0 0

x(1) 1.5 1 −0.33333333
x(2) 1.33333333 1.72222222 −0.66666667
x(3) 1.16666667 1.88888889 −0.90740741
x(4) 1.04629630 1.99382716 −0.96296296
...

...
...

...
x(28) 0.99999999 2.00000001 −0.99999999
x(29) 1 2 −1

Matrix Representation

The iterative steps performed above can be expressed in matrix form. First, decompose A into its
diagonal entries, its entries below the diagonal, and its entries above the diagonal, as A = D+L+U .

a11 0 . . . 0

0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann




0 0 . . . 0

a21 0 . . . 0
...

. . . . . .
...

an1 . . . an,n−1 0




0 a12 . . . a1n

0 0
. . .

...
...

...
. . . an−1,n

0 0 . . . 0


D L U

With this decomposition, x can be expressed in the following way.

Ax = b

(D + L+ U)x = b

Dx = −(L+ U)x+ b

x = D−1(−(L+ U)x+ b)

Now using x(k) as the variables on the right side of the equation to produce x(k+1) on the left,
and noting that L+ U = A−D, we have the following.

x(k+1) = D−1(−(A−D)x(k) + b)

= D−1(Dx(k) −Ax(k) + b)

= x(k) +D−1(b−Ax(k)) (1.2)

There is a potential problem with (1.2): calculating a matrix inverse is the cardinal sin of
numerical linear algebra, yet the equation contains D−1. However, since D is a diagonal matrix,
D−1 is also diagonal, and is easy to compute.
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D−1 =


1

a11
0 . . . 0

0 1
a22

. . . 0
...

...
. . .

...
0 0 . . . 1

ann


Because of this, the Jacobi method requires that A have nonzero diagonal entries.

The diagonal D can be represented by the 1-dimensional array d of the diagonal entries. Then
the matrix multiplication Dx is equivalent to the component-wise vector multiplication d∗x = x∗d.
Likewise, the matrix multiplication D−1x is equivalent to the component-wise “vector division” x/d.

Problem 1. Write a function that accepts a matrix A, a vector b, a convergence tolerance tol
defaulting to 10−8, and a maximum number of iterations maxiter defaulting to 100. Implement
the Jacobi method using (1.2), returning the approximate solution to the equation Ax = b.

Run the iteration until ‖x(k−1) − x(k)‖∞ < tol, and only iterate at most maxiter times.
Avoid using la.inv() to calculate D−1, but use la.norm() to calculate the vector ∞-norm.

Your function should be robust enough to accept systems of any size. To test your function,
generate a random b with np.random.random() and use the following function to generate an
n×n matrix A for which the Jacobi method is guaranteed to converge. Run the iteration, then
check that Ax(k) and b are close using np.allclose().

def diag_dom(n, num_entries=None, as_sparse=False):
"""Generate a strictly diagonally dominant (n, n) matrix.
Parameters:

n (int): The dimension of the system.
num_entries (int): The number of nonzero values.

Defaults to n^(3/2)-n.
as_sparse: If True, an equivalent sparse CSR matrix is returned.

Returns:
A ((n,n) ndarray): A (n, n) strictly diagonally dominant matrix.

"""
if num_entries is None:

num_entries = int(n**1.5) - n
A = sparse.dok_matrix((n,n))
rows = np.random.choice(n, size=num_entries)
cols = np.random.choice(n, size=num_entries)
data = np.random.randint(-4, 4, size=num_entries)
for i in range(num_entries):

A[rows[i], cols[i]] = data[i]
B = A.tocsr() # convert to row format for the next step
for i in range(n):

A[i,i] = abs(B[i]).sum() + 1
return A.tocsr() if as_sparse else A.toarray()

Also test your function on random n× n matrices. If the iteration is non-convergent, the
successive approximations will have increasingly large entries.
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Convergence

Most iterative methods only converge under certain conditions. For the Jacobi method, convergence
mostly depends on the nature of the matrix A. If the entries aij of A satisfy the property

|aii| >
∑
j 6=i

|aij | for all i = 1, 2, . . . , n,

then A is called strictly diagonally dominant (diag_dom() in Problem 1 generates a strictly diagonally
dominant n× n matrix). If this is the case,1 then the Jacobi method always converges, regardless of
the initial guess x0. This is a very different convergence result than many other iterative methods
such as Newton’s method where convergence is highly sensitive to the initial guess.

There are a few ways to determine whether or not an iterative method is converging. For
example, since the approximation x(k) should satisfy Ax(k) ≈ b, the normed difference ‖Ax(k)−b‖∞
should be small. This value is called the absolute error of the approximation. If the iterative method
converges, the absolute error should decrease to ε.

Problem 2. Modify your Jacobi method function in the following ways.

1. Add a keyword argument called plot, defaulting to False.

2. Keep track of the absolute error ‖Ax(k) − b‖∞ of the approximation at each iteration.

3. If plot is True, produce a lin-log plot (use plt.semilogy()) of the error against iteration
count. Remember to still return the approximate solution x.

If the iteration converges, your plot should resemble the following figure.
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1Although this seems like a strong requirement, most real-world linear systems can be represented by strictly
diagonally dominant matrices.
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The Gauss-Seidel Method
The Gauss-Seidel method is essentially a slight modification of the Jacobi method. The main differ-
ence is that in Gauss-Seidel, new information is used immediately. As an example, consider again
the system from the previous section,

2x1 − x3 = 3,

−x1 + 3x2 + 2x3 = 3,

+ x2 + 3x3 = −1.

As with the Jacobi method, solve for x1 in the first equation, x2 in the second equation, and
x3 in the third equation:

x1 = 1
2 (3 + x3),

x2 = 1
3 (3 + x1 − 2x3),

x3 = 1
3 (−1− x2).

Using x(0) to compute x
(1)
1 in the first equation as before,

x
(1)
1 =

1

2
(3 + x

(0)
3 ) =

1

2
(3 + 0) =

3

2
.

Now, however, use the updated value of x(1)
1 in the calculation of x(1)

2 :

x
(1)
2 =

1

3
(3 + x

(1)
1 − 2x

(0)
3 ) =

1

3
(3 +

3

2
− 0) =

3

2
.

Likewise, use the updated values of x(1)
1 and x

(1)
2 to calculate x

(1)
3 :

x
(1)
3 =

1

3
(−1− x

(1)
2 ) =

1

3
(−1− 3

2
) = −5

6
.

This process of using calculated information immediately is called forward substitution, and causes
the algorithm to (generally) converge much faster.

x
(k)
1 x

(k)
2 x

(k)
3

x(0) 0 0 0

x(1) 1.5 1.5 −0.83333333
x(2) 1.08333333 1.91666667 −0.97222222
x(3) 1.01388889 1.98611111 −0.99537037
x(4) 1.00231481 1.99768519 −0.99922840
...

...
...

...
x(11) 1.00000001 1.99999999 −1
x(12) 1 2 −1

Notice that Gauss-Seidel converges in less than half as many iterations as Jacobi does for this system.

Implementation

Because Gauss-Seidel updates only one element of the solution vector at a time, the iteration cannot
be summarized by a single matrix equation. Instead, the process is most generally described by the
equation

x
(k+1)
i =

1

aii

bi −
∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 . (1.3)
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Let ai be the ith row of A. The two sums closely resemble the regular vector product of ai
and x(k) without the ith term aiix

(k)
i . This suggests the simplification

x
(k+1)
i =

1

aii

(
bi − aTi x

(k) + aiix
(k)
i

)
= x

(k)
i +

1

aii

(
bi − aTi x

(k)
)
. (1.4)

One sweep through all the entries of x completes one iteration.

Problem 3. Write a function that accepts a matrix A, a vector b, a convergence tolerance
tol defaulting to 10−8, a maximum number of iterations maxiter defaulting to 100, and a
keyword argument plot that defaults to False. Implement the Gauss-Seidel method using
(1.4), returning the approximate solution to the equation Ax = b.

Use the same stopping criterion as in Problem 1. Also keep track of the absolute errors
of the iteration, as in Problem 2. If plot is True, plot the error against iteration count. Use
diag_dom() to generate test cases.

Achtung!

Since the Gauss-Seidel algorithm operates on the approximation vector in place (modifying
it one entry at a time), the previous approximation x(k−1) must be stored at the beginning
of the kth iteration in order to calculate ‖x(k−1) − x(k)‖∞. Additionally, since NumPy
arrays are mutable, the past iteration must be stored as a copy.

>>> x0 = np.random.random(5) # Generate a random vector.
>>> x1 = x0 # Attempt to make a copy.
>>> x1[3] = 1000 # Modify the "copy" in place.
>>> np.allclose(x0, x1) # But x0 was also changed!
True

# Instead, make a copy of x0 when creating x1.
>>> x0 = np.copy(x1) # Make a copy.
>>> x1[3] = -1000
>>> np.allclose(x0, x1)
False

Convergence

Whether or not the Gauss-Seidel method converges depends on the nature of A. If all of the eigenval-
ues of A are positive, A is called positive definite. If A is positive definite or if it is strictly diagonally
dominant, then the Gauss-Seidel method converges regardless of the initial guess x(0).
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Solving Sparse Systems Iteratively
Iterative solvers are best suited for solving very large sparse systems. However, using the Gauss-Seidel
method on sparse matrices requires translating code from NumPy to scipy.sparse. The algorithm
is the same, but there are some functions that are named differently between these two packages.2

Problem 4. Write a new function that accepts a sparse matrix A, a vector b, a convergence
tolerance tol, and a maximum number of iterations maxiter (plotting the convergence is not
required for this problem). Implement the Gauss-Seidel method using (1.4), returning the
approximate solution to the equation Ax = b. Use the usual default stopping criterion.

The Gauss-Seidel method requires extracting the rows Ai from the matrix A and com-
puting AT

i x. There are many ways to do this that cause some fairly serious runtime issues, so
we provide the code for this specific portion of the algorithm.

# Get the indices of where the i-th row of A starts and ends if the
# nonzero entries of A were flattened.
rowstart = A.indptr[i]
rowend = A.indptr[i+1]

# Multiply only the nonzero elements of the i-th row of A with the
# corresponding elements of x.
Aix = A.data[rowstart:rowend] @ x[A.indices[rowstart:rowend]]

To test your function, remeber to call diag_dom() using as_sparse=True

>>> A = diag_dom(50000, as_sparse=True)
>>> b = np.random.random(50000)

Successive Over-Relaxation

There are many systems that meet the requirements for convergence with the Gauss-Seidel method,
but for which convergence is still relatively slow. A slightly altered version of the Gauss-Seidel
method, called Successive Over-Relaxation (SOR), can result in faster convergence. This is achieved
by introducing a relaxation factor ω ≥ 1 and modifying (1.3) as

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

bi −
∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 .

Simplifying the equation, we have

x
(k+1)
i = x

(k)
i +

ω

aii

(
bi − aTi x

(k)
)
. (1.5)

Note that when ω = 1, SOR reduces to Gauss-Seidel. The relaxation factor ω weights the new
iteration between the current best approximation and the next approximation in a way that can
sometimes dramatically improve convergence.

2See the lab on Linear Systems for a review of scipy.sparse matrices and syntax.
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Problem 5. Write a function that accepts a sparse matrix A, a vector b, a relaxation factor
ω, a convergence tolerance tol, and a maximum number of iterations maxiter. Implement
SOR using (1.5), compute the approximate solution to the equation Ax = b. Use the usual
stopping criterion. Return the approximate solution x as well as a boolean indicating whether
the function converged and the number of iterations computed.
(Hint: this requires changing only one line of code from the sparse Gauss-Seidel function.)

A Finite Difference Method
Laplace’s equation is an important partial differential equation that arises often in both pure and
applied mathematics. In two dimensions, the equation has the following form.

∂2u

∂x2
+

∂2u

∂y2
= 0 (1.6)

Laplace’s equation can be used to model heat flow. Consider a square metal plate where the
top and bottom borders are fixed at 0◦ Celsius and the left and right sides are fixed at 100◦ Celsius.
Given these boundary conditions, we want to describe how heat diffuses through the rest of the plate.
The solution to Laplace’s equation describes the plate when it is in a steady state, meaning that the
heat at a given part of the plate no longer changes with time.

It is possible to solve (1.6) analytically. However, the problem can also be solved numerically
using a finite difference method. To begin, we impose a discrete, square grid on the plate with uniform
spacing. Denote the points on the grid by (xi, yj) and the value of u at these points (the heat) as
u(xi, yj) = Ui,j . Using the centered difference quotient for second derivatives to approximate the
partial derivatives,

0 =
∂2u

∂x2
+

∂2u

∂y2

≈ Ui+1,j − 2Ui,j + Ui−1,j

h2
+

Ui,j+1 − 2Ui,j + Ui,j−1

h2

=
1

h2
(−4Ui,j + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1) , (1.7)

where h = xi+1 − xi = yj+1 − yj is the distance between the grid points in either direction. This
problem can be formulated as a linear system. Suppose the grid has exactly (n+2)× (n+2) entries.
Then the interior of the grid (where u(x, y) is unknown) is n×n, and can be flattened into an n2× 1

vector u. The entire first row goes first, then the second row, proceeding to the nth row.

u =
[
U1,1 U1,2 · · · U1,n U2,1 U2,2 · · · U2,n · · · Un,n

]T
From (1.7), for an interior point Ui,j , we have

− 4Ui,j + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 = 0. (1.8)

If any of the neighbors to Ui,j is a boundary point on the grid, its value is already determined by the
boundary conditions. For example, the neighbor U3,0 of the gridpoint for U3,1 is fixed at U3,0 = 100.
In this case, (1.8) becomes

−4U3,1 + U2,1 + U3,2 + U4,1 = −100.
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Figure 1.1: On the left, an example of a 6 × 6 grid (n = 4) where the red dots are hot boundary
zones and the blue dots are cold boundary zones. On the right, the green dots are the neighbors of
the interior black dot that are used to approximate the heat at the black dot.

The constants on the right side of (1.8) become the n2×1 vector b. All nonzero entries of b correspond
to interior points that touch the left or right boundaries.

As an example, writing (1.8) for the 16 interior points of the grid in Figure 1.1 results in the
following 16× 16 system Au = b. Note the block structure (empty blocks are all zeros).

−4 1 0 0 1 0 0 0
1 −4 1 0 0 1 0 0
0 1 −4 0 0 0 1 0
0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0
0 1 0 0 1 −4 1 0
0 0 1 0 0 1 −4 1
0 0 0 1 0 0 1 −4





U1,1

U1,2

U1,3

U1,4

U2,1

U2,2

U2,3

U2,4

U3,1

U3,2

U3,3

U3,4

U4,1

U4,2

U4,3

U4,4



=



−100
0
0

−100

−100
0
0

−100

−100
0
0

−100

−100
0
0

−100


More concisely, for any positive integer n, the matrix A can be written as

A =



B I

I B I

I
. . . . . .
. . . . . . I

I B

 , where B =



−4 1

1 −4 1

1
. . . . . .
. . . . . . 1

1 −4

 is n× n.

Problem 6. Write a function that accepts an integer n, a relaxation factor ω, a convergence
tolerance tol that defaults to 10−8, a maximum number of iterations maxiter that defaults
to 100, and a bool plot that defaults to False. Generate and solve the corresponding system
Au = b using Problem 5. Also return a boolean indicating whether the function converged and
the number of iterations computed.
(Hint: see Problem 5 of the Linear Systems lab for the construction of A. Also, np.tile()
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may be useful for constructing b.)
If plot=True, visualize the solution u with a heatmap using plt.pcolormesh() (the

colormap "coolwarm" is a good choice in this case). This shows the distribution of heat over
the hot plate after it has reached its steady state. Note that the u must be reshaped as an
n× n array to properly visualize the result.

Problem 7. To demonstrate how convergence is affected by the value of the relaxation factor
ω in SOR, run your function from Problem 6 with ω = 1, 1.05, 1.1, . . . , 1.9, 1.95 and n = 20.
Plot the number of computed iterations as a function of ω. Return the value of ω that results
in the least number of iterations.

Note that the matrix A from Problem 6 is not strictly diagonally dominant. However,
A is positive definite, so the algorithm will converge. Unfortunately, convergence for these
kinds of systems usually requires more iterations than for strictly diagonally dominant systems.
Therefore, set tol=1e-2 and maxiter=1000.

Recall that ω = 1 corresponds to the Gauss-Seidel method. Choosing a more optimal
relaxation factor saves a large number of iterations. This could translate to saving days or
weeks of computation time while solving extremely large linear systems on a supercomputer.
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