
1 Introduction to Parallel
Computing

Lab Objective: Many modern problems involve so many computations that running them on
a single processor is impractical or even impossible. There has been a consistent push in the past
few decades to solve such problems with parallel computing, meaning computations are distributed to
multiple processors. In this lab, we explore the basic principles of parallel computing by introducing
the cluster setup, standard parallel commands, and code designs that fully utilize available resources.

Parallel Architectures
Imagine that you are in charge of constructing a very large building. You could, in theory, do all
of the work yourself, but that would take so long that it simply would be impractical. Instead, you
hire workers, who collectively can work on many parts of the building at once. Managing who does
what task takes some effort, but the overall effect is that the building will be constructed many times
faster than if only one person was working on it. This is the essential idea behind parallel computing.

A serial program is executed one line at a time in a single process. This is analogous to a single
person creating a building. Since modern computers have multiple processor cores, serial programs
only use a fraction of the computer’s available resources. This is beneficial for smooth multitasking
on a personal computer because multiple programs can run at once without interrupting each other.

For smaller computations, running serially is fine. However, some tasks are large enough that
running serially could take days, months, or in some cases years. In these cases it is beneficial to
devote all of a computer’s resources (or the resources of many computers) to a single program by
running it in parallel. Each processor can run part of the program on some of the inputs, and the
results can be combined together afterwards. In theory, using N processors at once can allow the
computation to run N times faster. Even though communication and coordination overhead prevents
the improvement from being quite that good, the difference is still substantial.

A computer cluster or supercomputer is essentially a group of regular computers that share
their processors and memory. There are several common architectures that are used for parallel
computing, and each architecture has a different protocol for sharing memory, processors, and tasks
between computing nodes, the different simultaneous processing areas. Each architecture offers unique
advantages and disadvantages, but the general commands used with each are very similar.

In this lab, we will explore the usage and capabilities of parallel computing using Python’s
iPyParallel package. iPyParallel can be installed with either pip or conda:

1

2 Lab 1. Intro to Parallel Computing

$ pip install ipyparallel

$ conda install ipyparallel

The iPyParallel Architecture

There are three main parts of the iPyParallel architecture:

• Client : The main program that is being run.

• Controller : Receives directions from the client and distributes instructions and data to the
computing nodes. Consists of a hub to manage communications and schedulers to assign
processes to the engines.

• Engines: The individual processors. Each engine is like a separate Python terminal, each with
its own namespace and computing resources.

Essentially, a Python program using iPyParallel creates a Client object connected to the cluster
that allows it to send tasks to the cluster and retreive their results. The engines run the tasks, and
the controller manages which engines run which tasks.

Figure 1.1: An outline of the iPyParallel architecture.

Setting up an iPyParallel Cluster

Before being able to use iPyParallel in a script or interpreter, it is necessarty to start an iPyParallel
cluster. We demonstrate here how to use a single machine with multiple processor cores as a clus-
ter. Establishing a cluster on multiple machines requires additional setup, which is detailed in the

3

Additional Material section. The following commands initialize parts or all of a cluster when run in
a terminal window:

Command Description
ipcontroller start Initialize a controller process.

ipengine start Initialize an engine process.
ipcluster start Initialize a controller process and several engines simultaneously.

Each of these processes can be stopped with a keyboard interrupt (Ctrl+C). By default, the
controller uses JSON files in UserDirectory/.ipython/profile-default/security/ to determine
its settings. Once a controller is running, it acts like a server, listening connections from clients and
engines. Engines will connect automatically to the controller when they start running. There is no
limit to the number of engines that can be started in their own terminal windows and connected to
the controller, but it is recommended to only use as many engines as there are cores to maximize
efficiency.

Achtung!

The directory that the controller and engines are started from matters. To facilitate connections,
navigate to the same folder as your source code before using ipcontroller, ipengine, or
ipcluster. Otherwise, the engines may not connect to the controller or may not be able to
find auxiliary code as directed by the client.

Starting a controller and engines in individual terminal windows with ipcontroller and
ipengine is a little inconvenient, but having separate terminal windows for the engines allows the
user to see individual errors in detail. It is also actually more convenient when starting a cluster of
multiple computers. For now, we use ipcluster to get the entire cluster started quickly.

$ ipcluster start # Assign an engine to each processor core.
$ ipcluster start --n 4 # Or, start a cluster with 4 engines.

Note

Jupyter notebooks also have a Clusters tab in which clusters can be initialized using an
interactive GUI. To enable the tab, run the following command. This operation may require
root permissions.

$ ipcluster nbextension enable

The iPyParallel Interface
Once a controller and its engines have been started and are connected, a cluster has successfully been
established. The controller will then be able to distribute messages to each of the engines, which will

4 Lab 1. Intro to Parallel Computing

compute with their own processor and memory space and return their results to the controller. The
client uses the ipyparallel module to send instructions to the controller via a Client object.

>>> from ipyparallel import Client

>>> client = Client() # Only works if a cluster is running.
>>> client.ids
[0, 1, 2, 3] # Indicates that there are four engines running.

Once the client object has been created, it can be used to create one of two classes: a DirectView
or a LoadBalancedView. These views allow for messages to be sent to collections of engines simul-
taneously. A DirectView allows for total control of task distribution while a LoadBalancedView
automatically tries to spread out the tasks equally on all engines. The remainder of the lab will be
focused on the DirectView class.

>>> dview = client[:] # Group all engines into a DirectView.
>>> dview2 = client[:2] # Group engines 0,1, and 2 into a DirectView.
>>> dview2.targets # See which engines are connected.
[0, 1, 2]

Since each engine has its own namespace, modules must be imported in every engine. There
is more than one way to do this, but the easiest way is to use the DirectView object’s execute()
method, which accepts a string of code and executes it in each engine.

Import NumPy in each engine.
>>> dview.execute("import numpy as np")

Problem 1. Write a function that initializes a Client object, creates a DirectView with all
available engines, and imports scipy.sparse as sparse on all engines. Return the DirectView.

Managing Engine Namespaces

Before continuing, set the DirectView you are using to use blocking:

>>> dview.block = True

This affects the way that functions called using the DirectView return their values. Using blocking
makes the process simpler, so we will use it initially. What blocking is will be explained later.

Push and Pull

The push() and pull() methods of a DirectView object manage variable values in the engines.
Use push() to set variable values and pull() to get variables. Each method also has a shortcut via
indexing.

5

Initialize the variables 'a' and 'b' on each engine.
>>> dview.push({'a':10, 'b':5}) # OR dview['a'] = 10; dview['b'] = 5
[None, None, None, None] # Output from each engine

Check the value of 'a' on each engine.
>>> dview.pull('a') # OR dview['a']
[10, 10, 10, 10]

Put a new variable 'c' only on engines 0 and 2.
>>> dview.push({'c':12}, targets=[0, 2])
[None, None]

Problem 2. Write a function variables(dx) that accepts a dictionary of variables. Create
a Client object and a DirectView and distribute the variables. Pull the variables back and
make sure they haven’t changed.

Scatter and Gather

Parallelization almost always involves splitting up collections and sending different pieces to each
engine for processing. The process is called scattering and is usually used for dividing up arrays
or lists. The inverse process of pasting a collection back together is called gathering and is usually
used on the results of processing. This method of distributing a dataset and collecting the results is
common for processing large data sets using parallelization.

>>> import numpy as np

Send parts of an array of 8 elements to each of the 4 engines.
>>> x = np.arange(1, 9)
>>> dview.scatter("nums", x)
>>> dview["nums"]
[array([1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]

Scatter the array to only the first two engines.
>>> dview.scatter("nums_big", x, targets=[0,1])
>>> dview.pull("nums_big", targets=[0,1])
[array([1, 2, 3, 4]), array([5, 6, 7, 8])]

Gather the array again.
>>> dview.gather("nums")
array([1, 2, 3, 4, 5, 6, 7, 8])

>>> dview.gather("nums_big", targets=[0,1])
array([1, 2, 3, 4, 5, 6, 7, 8])

6 Lab 1. Intro to Parallel Computing

Executing Code on Engines

Execute

The execute() method is the simplest way to run commands on parallel engines. It accepts a string
of code (with exact syntax) to be executed. Though simple, this method works well for small tasks.

'nums' is the scattered version of np.arange(1, 9).
>>> dview.execute("c = np.sum(nums)") # Sum each scattered component.
<AsyncResult: execute:finished>
>>> dview['c']
[3, 7, 11, 15]

Apply

The apply() method accepts a function and arguments to plug into it, and distributes them to the
engines. Unlike execute(), apply() returns the output from the engines directly.

>>> dview.apply(lambda x: x**2, 3)
[9, 9, 9, 9]
>>> dview.apply(lambda x,y: 2*x + 3*y, 5, 2)
[16, 16, 16, 16]

Note that the engines can access their local variables in either of the execution methods.

Map

The built-in map() function applies a function to each element of an iterable. The iPyParallel
equivalent, the map() method of the DirectView class, combines apply() with scatter() and
gather(). Simply put, it accepts a dataset, splits it between the engines, executes a function on the
given elements, returns the results, and combines them into one object.

>>> num_list = [1, 2, 3, 4, 5, 6, 7, 8]
>>> def triple(x): # Map a function with a single input.
... return 3*x
...
>>> dview.map(triple, num_list)
[3, 6, 9, 12, 15, 18, 21, 24]

>>> def add_three(x, y, z): # Map a function with multiple inputs.
... return x+y+z
...
>>> x_list = [1, 2, 3, 4]
>>> y_list = [2, 3, 4, 5]
>>> z_list = [3, 4, 5, 6]
>>> dview.map(add_three, x_list, y_list, z_list)
[6, 9, 12, 15]

7

Blocking vs. Non-Blocking

Parallel commands can be implemented two ways. The difference is subtle but extremely important.

• Blocking : The main program sends tasks to the controller, and then waits for all of the engines
to finish their tasks before continuing (the controller "blocks" the program’s execution). This
mode is usually best for problems in which each node is performing the same task.

• Non-Blocking : The main program sends tasks to the controller, and then continues without
waiting for responses. Instead of the results, functions return an AsyncResult object that can
be used to check the execution status and eventually retrieve the actual result.

Whether a function uses blocking is determined by default by the block attribute of the
DirectView The execution methods execute(), apply(), and map(), as well as push(), pull()
, scatter(), and gather(), each have a keyword argument block that can instead be used to
specify whether or not to using blocking. Alternatively, the methods apply_sync() and map_sync()
always use blocking, and apply_async() and map_async() always use non-blocking.

>>> f = lambda n: np.sum(np.random.random(n))

Evaluate f(n) for n=0,1,...,999 with blocking.
>>> %time block_results = [dview.apply_sync(f, n) for n in range(1000)]
CPU times: user 9.64 s, sys: 879 ms, total: 10.5 s
Wall time: 13.9 s

Evaluate f(n) for n=0,1,...,999 with non-blocking.
>>> %time responses = [dview.apply_async(f, n) for n in range(1000)]
CPU times: user 4.19 s, sys: 294 ms, total: 4.48 s
Wall time: 7.08 s

The non-blocking method is faster, but we still need to get its results.
Both methods produced a list, although the contents are different
>>> block_results[10] # This list holds actual result values from each engine.
[3.833061790352166,
4.8943956129713335,
4.268791758626886,
4.73533677711277]

>>> responses[10] # This list holds AsyncResult objects.
<AsyncResult: <lambda>:finished>
We can get the actual results by using the get() method of each AsyncResult
>>> %time nonblock_results = [r.get() for r in responses]
CPU times: user 3.52 ms, sys: 11 mms, total: 3.53 ms
Wall time: 3.54 ms # Getting the responses takes little time.

>>> nonblock_results[10] # This list also holds actual result values
[5.652608204341693,
4.984164642641558,
4.686288406810953,
5.275735658763963]

8 Lab 1. Intro to Parallel Computing

When non-blocking is used, commands can be continuously sent to engines before they have finished
their previous task. This allows them to begin their next task without waiting to send their calculated
answer and receive a new command. However, this requires a design that incorporates checkpoints
to retrieve answers and enough memory to store response objects.

Class Method Description
wait(timeout) Wait until the result is available or until timeout seconds pass.
ready() Return whether the call has completed.
successful() Return whether the call completed without raising an exception.

Will raise AssertionError if the result is not ready.
get(timeout) Return the result when it arrives. If timeout is not None and the

result does not arrive within timeout seconds then TimeoutError
is raised.

Table 1.1: All information from https://ipyparallel.readthedocs.io/en/latest/details.
html#AsyncResult.

Table 1.1 details the methods of the AsyncResult object.
There are additional magic methods supplied by iPyParallel that make some of these oper-

ations easier. These methods are explained in the Additional Material section. More information
on iPyParallel architecture, interface, and methods can also be found at https://ipyparallel.
readthedocs.io/en/latest/index.html.

Problem 3. Write a function that accepts an integer n. Instruct each engine to make n draws
from the standard normal distribution, then hand back the mean, minimum, and maximum
draws to the client. Return the results in three lists.

If you have four engines running, your results should resemble the following:

>>> means, mins, maxs = problem3(1000000)
>>> means
[0.0031776784, -0.0058112042, 0.0012574772, -0.0059655951]
>>> mins
[-4.1508589, -4.3848019, -4.1313324, -4.2826519]
>>> maxs
[4.0388107, 4.3664958, 4.2060184, 4.3391623]

Problem 4. Use your function from Problem 3 to compare serial and parallel execution times.
For n = 1000000, 5000000, 10000000, 15000000,

1. Time how long it takes to run your function.

2. Time how long it takes to do the same process serially. Make n draws and then calculate
and record the statistics, but use a for loop with N iterations, where N is the number
of engines running.

https://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult
https://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult
https://ipyparallel.readthedocs.io/en/latest/index.html
https://ipyparallel.readthedocs.io/en/latest/index.html

9

Plot the execution times against n. You should notice an increase in efficiency in the parallel
version as the problem size increases.

Applications

Parallel computing, when used correctly, is one of the best ways to speed up the run time of an
algorithm. As a result, it is very commonly used today and has many applications, such as the
following:

• Graphic rendering

• Facial recognition with large databases

• Numerical integration

• Calculating discrete Fourier transforms

• Simulation of various natural processes (weather, genetics, etc.)

• Natural language processing

In fact, there are many problems that are only feasible to solve through parallel computing because
solving them serially would take too long. With some of these problems, even the parallel solution
could take years. Some brute-force algorithms, like those used to crack simple encryptions, are
examples of this type of problem.

The problems mentioned above are well suited to parallel computing because they can be
manipulated in such a way that running them on multiple processors results in a significant run time
improvement. Manipulating an algorithm to be run with parallel computing is called parallelizing
the algorithm. When a problem only requires very minor manipulations to parallelize, it is often
called embarrassingly parallel. Typically, an algorithm is embarrassingly parallel when there is little
to no dependency between results. Algorithms that do not meet this criteria can still be parallelized,
but there is not always a significant enough improvement in run time to make it worthwhile. For
example, calculating the Fibonacci sequence using the usual formula, F(n) = F(n − 1) + F(n − 2),
is poorly suited to parallel computing because each element of the sequence is dependent on the
previous two elements.

Problem 5. The trapeziod rule is a simple technique for numerical integration:∫ b

a

f(x)dx ≈ h

2

N∑
k=1

(f(xk) + f(xk+1)),

where a = x1 < x2 < . . . < xN = b and h = xn+1 − xn for each n. See Figure 1.2.
Note that estimation of the area of each interval is independent of all other intervals. As

a result, this problem is considered embarrassingly parallel.
Write a function that accepts a function handle to integrate, bounds of integration, and

the number of points to use for the approximation. Parallelize the trapezoid rule in order to
estimate the integral of f . That is, evenly divide the points among all available processors
and run the trapezoid rule on each portion simultaneously. The sum of the results of all the
processors will be the estimation of the integral over the entire interval of integration. Return
this sum.

10 Lab 1. Intro to Parallel Computing

x1 x2 x3 x4 x5

y

x

y = f(x)

h

Figure 1.2: A depiction of the trapezoid rule with uniform partitioning.

Intercommunication

The phrase parallel computing refers to designing an architecture and code that makes the best use
of computing resources for a problem. Occasionally, this will require nodes to be interdependent on
each other for previous results. This contributes to a slower result because it requires a great deal
of communication latency, but is sometimes the only method to parallelize a function. Although
important, the ability to effectively communicate between engines has not been added to iPyParallel.
It is, however, possible in an MPI framework and will be covered in the MPI lab.

11

Additional Material
Clusters of Multiple Machines

Though setting up a computing cluster with iPyParallel on multiple machines is similar to a
cluster on a single computer, there are a couple of extra considerations to make. The majority of
these considerations have to do with the network setup of your machines, which is unique to each
situation. However, some basic steps have been taken from https://ipyparallel.readthedocs.
io/en/latest/process.html and are outlined below.

SSH Connection

When using engines and controllers that are on separate machines, their communication will most
likely be using an SSH tunnel. This Secure Shell allows messages to be passed over the network.

In order to enable this, an SSH user and IP address must be established when starting the
controller. An example of this follows.

$ ipcontroller --ip=<controller IP> --user=<user of controller> --enginessh=<←↩
user of controller>@<controller IP>

Engines started on remote machines then follow a similar format.

$ ipengine --location=<controller IP> --ssh=<user of controller>@<controller IP←↩
>

Another way of affecting this is to alter the configuration file in UserDirectory/.ipython/
profile-default/security/ipcontroller-engine.json. This can be modified to contain the
controller IP address and SSH information.

All of this is dependent on the network feasibility of SSH connections. If there are a great deal
of remote engines, this method will also require the SSH password to be entered many times. In
order to avoid this, the use of SSH Keys from computer to computer is recommended.

Magic Methods & Decorators

To be more easily usable, the iPyParallel module has incorporated a few magic methods and
decorators for use in an interactive iPython or Python terminal.

Magic Methods

The iPyParallel module has a few magic methods that are very useful for quick commands in
iPython or in a Jupyter Notebook. The most important are as follows. Additional methods are
found at https://ipyparallel.readthedocs.io/en/latest/magics.html.

%px - This magic method runs the corresponding Python command on the engines specified
in dview.targets.

%autopx - This magic method enables a boolean that runs any code run on every engine until
%autopx is run again.

Examples of these magic methods with a client and four engines are as follows.

https://ipyparallel.readthedocs.io/en/latest/process.html
https://ipyparallel.readthedocs.io/en/latest/process.html
https://ipyparallel.readthedocs.io/en/latest/magics.html

12 Lab 1. Intro to Parallel Computing

%px
In [4]: with dview.sync_imports():

...: import numpy

...:
importing numpy on engine(s)
In [5]: \%px a = numpy.random.random(2)

In [6]: dview['a']
Out[6]:
[array([0.30390162, 0.14667075]),
array([0.95797678, 0.59487915]),
array([0.20123566, 0.57919846]),
array([0.87991814, 0.31579495])]

%autopx
In [7]: %autopx
%autopx enabled
In [8]: max_draw = numpy.max(a)

In [9]: print('Max_Draw: {}'.format(max_draw))
[stdout:0] Max_Draw: 0.30390161663280246
[stdout:1] Max_Draw: 0.957976784975849
[stdout:2] Max_Draw: 0.5791984571339429
[stdout:3] Max_Draw: 0.8799181411958089

In [10]: %autopx
%autopx disabled

Decorators

The iPyParallel module also has a few decorators that are very useful for quick commands. The
two most important are as follows:

@remote - This decorator creates methods on the remote engines.

@parallel - This decorator creates methods on remote engines that break up element wise
operations and recombine results.

Examples of these decorators are as follows.

Remote decorator
>>> @dview.remote(block=True)
>>> def plusone():
... return a+1
>>> dview['a'] = 5
>>> plusone()
[6, 6, 6, 6,]

13

Parallel decorator
>>> import numpy as np

>>> @dview.parallel(block=True)
>>> def combine(A,B):
... return A+B
>>> ex1 = np.random.random((3,3))
>>> ex2 = np.random.random((3,3))
>>> print(ex1+ex2)
[[0.87361929 1.41110357 0.77616724]
[1.32206426 1.48864976 1.07324298]
[0.6510846 0.45323311 0.71139272]]

>>> print(combine(ex1,ex2))
[[0.87361929 1.41110357 0.77616724]
[1.32206426 1.48864976 1.07324298]
[0.6510846 0.45323311 0.71139272]]

	Intro to Parallel Computing

