
1 GeoPandas

Lab Objective: GeoPandas is a package designed to organize and manipulate geographic data,
It combines the data manipulation tools of pandas with the geometric capabilities of the Shapely
package. In this lab, we explore the basic data structures of GeoSeries and GeoDataFrames and their
functionalities.

Installation
GeoPandas is a new package designed to combine the functionality of pandas with Shapely, a package
used for geometric manipulation. Using GeoPandas with geographic data is very useful as it allows
the user to not only compare numerical data, but also geometric attributes. GeoPandas can be
installed via pip:

>>> pip install geopandas

However, Geopandas can be notoriously difficult to install. This is especially the case if the python
environment is not carefully maintained. Some of its dependencies can also be very difficult to
install on certain systems. Because of this, using Colab for this lab is recommended; its environ-
ment is set up in a way that makes GeoPandas very easy to install. Otherwise, the GeoPandas
documentation contains some additional options that can be used if installation difficulties occur:
https://geopandas.org/install.html.

GeoSeries
A GeoSeries is a pandas Series where each entry is a set of geometric objects. There are three classes
of geometric objects inherited from the Shapely package:

1. Points / Multi-Points

2. Lines / Multi-Lines

3. Polygons / Multi-Polygons

A point is used to identify objects like coordinates, where there is one small instance of the object. A
line could be used to describe objects such as roads. A polygon could be used to identify regions, such
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as a country. Multipoints, multilines, and multipolygons contain lists of points, lines, and polygons,
respectively.

Since each object in the GeoSeries is also a Shapely object, the GeoSeries inherits many meth-
ods and attributes of Shapely objects. Some of the key attributes and methods are listed in Table 1.1.
These attributes and methods can be used to calculate distances, find the sizes of countries, and de-
termine whether coordinates are within country’s boundaries. The example below uses the attribute
bounds to find the maximum and minimum coordinates of Egypt in a built-in GeoDataFrame.

Method/Attribute Description
distance(other) returns minimum distance from GeoSeries to other
contains(other) returns True if shape contains other

intersects(other) returns True if shape intersects other
area returns shape area

convex_hull returns convex shape around all points in the object
bounds returns the bounding x- and y-coordinates of the object

Table 1.1: Attributes and Methods for GeoSeries

>>> import geopandas as gpd
>>> world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
# Get GeoSeries for Egypt
>>> egypt = world[world['name']=='Egypt']

# Find bounds of Egypt
>>> egypt.bounds

minx miny maxx maxy
47 24.70007 22.0 36.86623 31.58568

Creating GeoDataFrames
The main structure used in GeoPandas is a GeoDataFrame, which is similar to a pandas DataFrame.
A GeoDataFrame has one special column called geometry, which must be a GeoSeries. This GeoSeries
column is used when a spatial method, like distance(), is used on the GeoDataFrame.

A GeoDataFrame can be made from a pandas DataFrame. At least one of the columns in the
DataFrame should contain geometric information. This column containing geometric information can
be converted to a GeoSeries using the apply() method. At this point, the Pandas DataFrame can
be cast as a GeoDataFrame. Assign which column will be the geometry using either the geometry
keyword in the constructor or the set_geometry() method afterwards.

>>> import pandas as pd
>>> import geopandas as gpd
>>> from shapely.geometry import Point, Polygon

# Create a Pandas DataFrame
>>> df = pd.DataFrame({'City': ['Seoul', 'Lima', 'Johannesburg'],
... 'Country': ['South Korea', 'Peru', 'South Africa'],
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... 'Latitude': [37.57, -12.05, -26.20],

... 'Longitude': [126.98, -77.04, 28.04]})

# Create geometry column
>>> df['Coordinates'] = list(zip(df.Longitude, df.Latitude))

# Make geometry column Shapely objects
>>> df['Coordinates'] = df['Coordinates'].apply(Point)

# Cast as GeoDataFrame
>>> gdf = gpd.GeoDataFrame(df, geometry='Coordinates')

# Equivalently, specify the geometry after construction
# Note that set_geometry() returns a new GeoDataFrame
>>> gdf = gpd.GeoDataFrame(df)
>>> gdf = gdf.set_geometry('Coordinates')

# Display the GeoDataFrame
>>> gdf

City Country Latitude Longitude Coordinates
0 Seoul South Korea 37.57 126.98 POINT (126.98000 37.57000)
1 Lima Peru -12.05 -77.04 POINT (-77.04000 -12.05000)
2 Johannesburg South Africa -26.20 28.04 POINT (28.04000 -26.20000)

# Create a polygon with all three cities as points
>>> city_polygon = Polygon(list(zip(df.Longitude, df.Latitude)))

A GeoDataFrame can also be made directly from a dictionary. If the dictionary already contains
geometric objects, the corresponding column can be directly set as the geometry in the constructor.
Otherwise, a column containing geometry data can be created as in the above example and then set
as the geometry with the set_geometry() method.

# Both of these methods create the same GeoDataFrame as above
# Directly create the GeoDataFrame from the dictionary
>>> gdf = gpd.GeoDataFrame({'City': ['Seoul', 'Lima', 'Johannesburg'],
... 'Country': ['South Korea', 'Peru', 'South Africa'],
... 'Latitude': [37.57, -12.05, -26.20],
... 'Longitude': [126.98, -77.04, 28.04]})
# Create geometry column and set as the geometry
>>> gdf['Coordinates'] = list(zip(df.Longitude, df.Latitude))
>>> gdf['Coordinates'] = df['Coordinates'].apply(Point)
# inplace=True modifies gdf itself rather than returning a copy
>>> gdf.set_geometry('Coordinates', inplace=True)

# Equivalently, using a dictionary that already contains geometry objects
>>> gdf = gpd.GeoDataFrame({'City': ['Seoul', 'Lima', 'Johannesburg'],
... 'Country': ['South Korea', 'Peru', 'South Africa'],
... 'Coordinates': [Point(126.98,37.57),
... Point(-77.04,-12.05), Point(28.04,-12.05)]},



4 Lab 1. GeoPandas

... geometry='Coordinates')

Note

Longitude is the angular measurement starting at the Prime Meridian, 0°, and going to 180°
to the east and −180° to the west. Latitude is the angle between the equatorial plane and
the normal line at a given point; a point along the Equator has latitude 0, the North Pole has
latitude +90° or 90°N , and the South Pole has latitude −90° or 90°S.

Plotting GeoDataFrames
Information from a GeoDataFrame is plotted based on the geometry column. Data points are dis-
played as geometry objects. The following example plots the shapes in the world GeoDataFrame.

# Plot world GeoDataFrame
>>> world.plot()
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Figure 1.1: World map

Multiple GeoDataFrames can be plotted at once. This can be done by by setting one Geo-
DataFrame as the base of the plot and ensuring that each layer uses the same axes. In the following
example, the file airports.csv, containing the coordinates of world airports, is loaded into a Geo-
DataFrame and plotted on top of the boundary of the world GeoDataFrame.

# Set outline of world countries as base
>>> fig,ax = plt.subplots(figsize=(10,7), ncols=1, nrows=1)
>>> base = world.boundary.plot(edgecolor='black', ax=ax, linewidth=1)

# Load airport data and convert to a GeoDataFrame
>>> airports = pd.read_csv('airports.csv')
>>> airports['Coordinates'] = list(zip(airports.Longitude, airports.Latitude))
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>>> airports['Coordinates'] = airports.Coordinates.apply(Point)
>>> airports = gpd.GeoDataFrame(airports, geometry='Coordinates')

# Plot airports on top of world map
>>> airports.plot(ax=base, marker='o', color='green', markersize=1)
>>> ax.set_xlabel('Longitude')
>>> ax.set_ylabel('Latitude')
>>> ax.set_title('World Airports')
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World Airports

Figure 1.2: Airport map

Problem 1. Read in the file airports.csv as a pandas DataFrame. Create three convex
hulls around the three sets of airports listed below. This can be done by passing in lists of the
airports’ coordinates to a shapely.geometry.Polygon object.

Create a new GeoDataFrame with these three Polygons as entries. Plot this GeoDataFrame
on top of an outlined world map.

• Maio Airport, Scatsta Airport, Stokmarknes Skagen Airport, Bekily Airport, K. D.
Matanzima Airport, RAF Ascension Island

• Oiapoque Airport, Maio Airport, Zhezkazgan Airport, Walton Airport, RAF Ascension
Island, Usiminas Airport, Piloto Osvaldo Marques Dias Airport

• Zhezkazgan Airport, Khanty Mansiysk Airport, Novy Urengoy Airport, Kalay Airport,
Biju Patnaik Airport, Walton Airport
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Working with GeoDataFrames
As previously mentioned, GeoDataFrames contain many of the functionalities of pandas DataFrames.
For example, to create a new column, define a new column name in the GeoDataFrame with the
needed information for each GeoSeries.

# Create column in the world GeoDataFrame for gdp_per_capita
>>> world['gdp_per_cap'] = world.gdp_md_est / world.pop_est

GeoDataFrames can utilize many pandas functionalities, and they can also be parsed by geo-
metric manipulations. For example, a useful way to index GeoDataFrames is with the cx indexer.
This splits the GeoDataFrame by the coordinates of each geometric object. It is used by calling the
method cx on a GeoDataFrame, followed by a slicing argument, where the first element refers to the
longitude and the second refers to latitude.

# Create a GeoDataFrame containing the northern hemisphere
>>> north = world.cx[:, 0:]

# Create a GeoDataFrame containing the southeastern hemisphere
>>> south_east = world.cx[0:, :0]

GeoSeries objects in a GeoDataFrame can also be dissolved, or merged, together into one
GeoSeries based on their geometry data. For example, all countries on one continent could be
merged to create a GeoSeries containing the information of that continent. The method designed for
this is called dissolve. It receives two parameters, by and aggfunc. by indicates which column to
dissolve along, and aggfunc tells how to combine the information in all other columns. The default
aggfunc is first, which returns the first application entry. In the following example, we use sum as
the aggfunc so that each continent is the combination of its countries.

>>> world = world[['continent', 'geometry', 'gdp_per_cap']]

# Dissolve world GeoDataFrame by continent
>>> continent = world.dissolve(by = 'continent', aggfunc='sum')

Projections and Coloring
When plotting, GeoPandas uses the CRS (coordinate reference system) of a GeoDataFrame. This
reference system indicates how coordinates should be spaced on a plot. Two of the most commonly
used CRSs are EPSG:4326 and EPSG:3395. EPSG:4326 is the standard latitude-longitude projection
used by GPS. EPSG:3395, also known as the Mercator projection, is the standard navigational
projection.

When creating a new GeoDataFrame, it is important to set the crs attribute of the Geo-
DataFrame. This allows any plots to be shown correctly. Furthermore, GeoDataFrames being layered
need to have the same CRS. To change the CRS, use the method to_crs().

# Check CRS of world GeoDataFrame
>>> print(world.crs)
epsg:4326
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# Change CRS of world to Mercator
# inplace=True ensures that we modify world instead of returning a copy
>>> world.to_crs(3395, inplace=True)
>>> print(world.crs)
epsg:3395

GeoPandas accepts many different CRSs; a reference can be found at www.spatialreference.
org. Additionally, inspecting a given CRS object in the terminal without using print() or str()
can be used to get additional information about a specific CRS:1

>>> world.crs
<Projected CRS: EPSG:3395>
Name: WGS 84 / World Mercator
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: World between 80◦S and 84◦N.
- bounds: (-180.0, -80.0, 180.0, 84.0)
Coordinate Operation:
- name: World Mercator
- method: Mercator (variant A)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

GeoDataFrames can also be plotted using the values in the the other attributes of the GeoSeries.
The map plots the color of each geometry object according to the value of the column selected. This
is done by passing in the parameter column into the plot() method.

>>> fig, ax = plt.subplots(1, figsize=(10,4))
# Plot world based on gdp
>>> world.plot(column='gdp_md_est', cmap='OrRd', legend=True, ax=ax)
>>> ax.set_title('World Map based on GDP')
>>> ax.set_xlabel('Longitude')
>>> ax.set_ylabel('Latitude')
>>> plt.show()

1This can also be accomplished using print(repr(crs)).

www.spatialreference.org
www.spatialreference.org
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World Map based on GDP
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Figure 1.3: World Map Based on GDP

Problem 2. The file county_data.gpkg.zip contains information about US counties.a After
unzipping, use the command gpd.read_file('county_data.gpkg') to create a GeoDataFrame
of this information. Each county’s shape is stored in the geometry column. Use this to plot all
US counties two times, first using the default CRS and then using EPSG:5071.

Next, create a new GeoDataFrame that merges all counties within a single state. Drop
regions with the following STATEFP codes: 02, 15, 60, 66, 69, 72, 78. Plot this GeoDataFrame
to see an outline of all 48 contiguous states. Ensure a CRS of EPSG:5071.

aSource: http://www2.census.gov/geo/tiger/GENZ2016/shp/cb_2016_us_county_5m.zip

Note

.gpkg files are actually structured as a directory that contains several files that each contain
parts of the data. For instance, county_data.gpkg consists of the files county_data.cpg,
county_data.dbf, county_data.prj, county_data.shp, and county_data.shx. Be sure that
these files are placed directly in the first level of folders, and not in further subdirectories.
To use this file in Google Colab, upload the zipped file and extract it with the following code:

county = files.upload()
!unzip county_data.gpkg.zip

It then can be loaded:

county_df = gpd.read_file('county_data.gpkg')

http://www2.census.gov/geo/tiger/GENZ2016/shp/cb_2016_us_county_5m.zip
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Merging GeoDataFrames

Just as multiple pandas DataFrames can be merged, multiple GeoDataFrames can be merged with
attribute joins or spatial joins. An attribute join is similar to a merge in pandas. It combines two
GeoDataFrames on a column (not the geometry column) and then combines the rest of the data into
one GeoDataFrame.

>>> world = gpd.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
>>> cities = gpd.read_file(geopandas.datasets.get_path('naturalearth_cities'))

# Create subsets of the world and cities GeoDataFrames
>>> world = world[['continent', 'name', 'iso_a3']]
>>> cities = cities[['name', 'iso_a3']]

# Merge the GeoDataFrames on their iso_a3 code
>>> countries = world.merge(cities, on='iso_a3')

A spatial join merges two GeoDataFrames based on their geometry data. The function used
for this is sjoin. sjoin accepts two GeoDataFrames and then direction on how to merge. It is
imperative that two GeoDataFrames have the same CRS. In the example below, we merge using an
inner join with the option intersects. The inner join means that we will only use keys in the
intersection of both geometry columns, and we will retain only the left geometry column. intersects
tells the GeoDataFrames to merge on GeoSeries that intersect each other. Other options include
contains and within.

# Combine countries and cities on their geographic location
>>> countries = gpd.sjoin(world, cities, how='inner', op='intersects')

Problem 3. Load in the file nytimes.csva as a DataFrame. This file includes county-level
data for the cumulative cases and deaths of Covid-19 in the US, starting with the first case in
Snohomish County, Washington, on January 21, 2020. Begin by converting the date column
into a DatetimeIndex.

Next, use county FIPS codes to merge your GeoDataFrame from Problem 2 with the
DataFrame you just created. A FIPS code is a 5-digit unique identifier for geographic locations.
Ignore rows in the Covid-19 DataFrame with unknown FIPS codes as well as all data from
Hawaii and Alaska.

Note that the fips column of the Covid-19 DataFrame stores entries as floats, but the
county GeoDataFrame stores FIPS codes as strings, with the first two digits in the STATEFP
column and the last three in the COUNTYFP column.

Once you have completed the merge, plot the cases from March 21, 2020 on top of your
state outline map from Problem 2, using the CRS of EPSG:5071. Finally, print out the name
of the county with the most cases on March 21, 2020 along with its case count.

aSource: https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv

https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv
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Logarithmic Plotting Techniques
The color scheme of a graph can also help to communicate information clearly. A good list of
available colormaps can be found at https://matplotlib.org/3.2.1/gallery/color/colormap_
reference.html. Note also that you can reverse any colormap by adding _r to the end. The
following example demonstrates some plotting features, using country GDP as in Figure 1.3.

>>> fig, ax = plt.subplots(figsize=(15,7), ncols=1, nrows=1)
>>> world.plot(column='gdp_md_est', cmap='plasma_r',
... ax=ax, legend=True, edgecolor='gray')

# Add title and remove axis tick marks
>>> ax.set_title('GDP on Linear Scale')
>>> ax.set_yticks([])
>>> ax.set_xticks([])
>>> plt.show()
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Figure 1.4: World map showing country GDP

Sometimes data can be much more informative when plotted on a logarithmic scale. See how
the world map changes when we add a norm argument in the code below. Depending on the purpose
of the graph, Figure 1.5 may be more informative than Figure 1.4.

>>> from matplotlib.colors import LogNorm
>>> from matplotlib.cm import ScalarMappable
>>> fig, ax = plt.subplots(figsize=(15,6), ncols=1, nrows=1)

# Set the norm using data bounds
>>> data = world.gdp_md_est
>>> norm = LogNorm(vmin=min(data), vmax=max(data))

# Plot the graph using the norm
>>> world.plot(column='gdp_md_est', cmap='plasma_r', ax=ax,

https://matplotlib.org/3.2.1/gallery/color/colormap_reference.html
https://matplotlib.org/3.2.1/gallery/color/colormap_reference.html
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... edgecolor='gray', norm=norm)

# Create a custom colorbar
>>> cbar = fig.colorbar(ScalarMappable(norm=norm, cmap='plasma_r'),
... ax=ax, orientation='horizontal', pad=0, label='GDP')

>>> ax.set_title('Country Area on a Log Scale')
>>> ax.set_yticks([])
>>> ax.set_xticks([])
>>> plt.show()

GDP on a Log Scale
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Figure 1.5: World map showing country GDP using a log scale

Problem 4. As in Problem 3, plot your state outline map from Problem 2 on top of a map of
the Covid-19 cases from March 21, 2020. This time, however, use a log scale. Use EPSG:5071 for
the CRS. Pick a good colormap (the counties with the most cases should generally be darkest)
and be sure to display a colorbar.

Problem 5. In this problem, you will create an animation of the spread of Covid-19 through
US counties from January 21, 2020 to June 21, 2020. Use a log scale and a good colormap, and
be sure that you’re using the same norm and colorbar for the whole animation. Use EPSG:5071
for the projection.

As a reminder, below is a summary of what you will need in order to animate this map.
You may also find it helpful to refer to the animation section included with the Volume 4 lab
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manual.

1. Set up your figure and norm. Be sure to use the highest case count for your vmax so that
the scale remains uniform.

2. Write your update function. This should plot the cases from a given day.

3. Set up your colorbar. Do this outside the update function to avoid adding a new colorbar
each day.

4. Create the animation and embed it.
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