
1 Pandas 1: Introduction

Lab Objective: Though NumPy and SciPy are powerful tools for numerical computing, they lack
some of the high-level functionality necessary for many data science applications. Python’s pandas
library, built on NumPy, is designed specifically for data management and analysis. In this lab
we introduce pandas data structures, syntax, and explore its capabilities for quickly analyzing and
presenting data.

Pandas Basics
Pandas is a python library used primarily to analyze data. It combines functionality of NumPy,
MatPlotLib, and SQL to create an easy to understand library that allows for the manipulation of
data in various ways. In this lab we focus on the use of Pandas to analyze and manipulate data in
ways similar to NumPy and SQL.

Pandas Data Structures

Series

The first pandas data structure is a Series. A Series is a one-dimensional array that can hold any
datatype, similar to a ndarray. However, a Series has an index that gives a label to each entry.
An index generally is used to label the data.

Typically a Series contains information about one feature of the data. For example, the data
in a Series might show a class’s grades on a test and the Index would indicate each student in the
class. To initialize a Series, the first parameter is the data and the second is the index.

>>> import pandas as pd
>>>
# Initialize Series of student grades
>>> math = pd.Series(np.random.randint(0,100,4), ['Mark', 'Barbara',
... 'Eleanor', 'David'])
>>> english = pd.Series(np.random.randint(0,100,5), ['Mark', 'Barbara',
... 'David', 'Greg', 'Lauren'])
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DataFrame

The second key pandas data structure is a DataFrame. A DataFrame is a collection of multiple
Series. It can be thought of as a 2-dimensional array, where each row is a separate datapoint and
each column is a feature of the data. The rows are labeled with an index (as in a Series) and the
columns are labeled in the attribute columns.

There are many different ways to initialize a DataFrame. One way to initialize a DataFrame is
by passing in a dictionary as the data of the DataFrame. The keys of the dictionary will become the
labels in columns and the values are the Series associated with the label.

# Create a DataFrame of student grades
>>> grades = pd.DataFrame({"Math": math, "English": english})
>>> grades

Math English
Barbara 52.0 73.0
David 10.0 39.0
Eleanor 35.0 NaN
Greg NaN 26.0
Lauren NaN 99.0
Mark 81.0 68.0

Notice that pd.DataFrame automatically lines up data from both Series that have the same
index. If the data only appears in one of the Series, the corresponding entry for the other Series
is NaN.

We can also initialize a DataFrame with a NumPy array. With this method, the data is passed in
as a 2-dimensional NumPy array, while the column labels and the index are passed in as parameters.
The first column label goes with the first column of the array, the second with the second, and so
forth. The index works similarly.

>>> import numpy as np
# Initialize DataFrame with NumPy array. This is identical to the grades ←↩

DataFrame above.
>>> data = np.array([[52.0, 73.0], [10.0, 39.0], [35.0, np.nan],
... [np.nan, 26.0], [np.nan, 99.0], [81.0, 68.0]])
>>> grades = pd.DataFrame(data, columns = ['Math', 'English'], index =
... ['Barbara', 'David', 'Eleanor', 'Greg', 'Lauren', 'Mark'])

# View the columns
>>> grades.columns
Index(['Math', 'English'], dtype='object')

# View the Index
>>> grades.index
Index(['Barbara', 'David', 'Eleanor', 'Greg', 'Lauren', 'Mark'], dtype='object'←↩

)

A DataFrame can also be viewed as a NumPy array using the attribute values.

# View the DataFrame as a NumPy array
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>>> grades.values
array([[ 52., 73.],

[ 10., 39.],
[ 35., nan],
[ nan, 26.],
[ nan, 99.],
[ 81., 68.]])

Data I/O

The pandas library has functions that make importing and exporting data simple. The functions
allow for a variety of file formats to be imported and exported, including CSV, Excel, HDF5, SQL,
JSON, HTML, and pickle files.

Method Description
to_csv() Write the index and entries to a CSV file

read_csv() Read a csv and convert into a DataFrame
to_json() Convert the object to a JSON string

to_pickle() Serialize the object and store it in an external file
to_sql() Write the object data to an open SQL database

read_html() Read a table in an html page and convert to a DataFrame

Table 1.1: Methods for exporting data in a pandas Series or DataFrame.

The CSV (comma separated values) format is a simple way of storing tabular data in plain text.
Because CSV files are one of the most popular file formats for exchanging data, we will explore the
read_csv() function in more detail. Some frequently-used keyword arguments include the following:

• delimiter: The character that separates data fields. It is often a comma or a whitespace
character.

• header: The row number (0 indexed) in the CSV file that contains the column names.

• index_col: The column (0 indexed) in the CSV file that is the index for the DataFrame.

• skiprows: If an integer n, skip the first n rows of the file, and then start reading in the data.
If a list of integers, skip the specified rows.

• names: If the CSV file does not contain the column names, or you wish to use other column
names, specify them in a list.

Another particularly useful function is read_html(), which is useful when scraping data. It
takes in a url or html file and an optional argument match, a string or regex, and returns a list of
the tables that match the match in a DataFrame. While the resulting data will probably need to be
cleaned, it is frequently much faster than scraping a website.
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Data Manipulation

Accessing Data

In general, the best way to access data in a Series or DataFrame is through the indexers loc and
iloc. While array slicing can be used, it is more efficient to use these indexers. Accessing Series and
DataFrame objects using these indexing operations is more efficient than slicing because the bracket
indexing has to check many cases before it can determine how to slice the data structure. Using loc
or iloc explicitly bypasses these extra checks. The loc index selects rows and columns based on
their labels, while iloc selects them based on their integer position. With these indexers, the first
and second arguments refer to the rows and columns, respectively, just as array slicing.

# Use loc to select the Math scores of David and Greg
>>> grades.loc[['David', 'Greg'],'Math']
David 10.0
Greg NaN
Name: Math, dtype: float64

# Use iloc to select the Math scores of David and Greg
>>> grades.iloc[[1,3], 0]
David 10.0
Greg NaN

To access an entire column of a DataFrame, the most efficient method is to use only square
brackets and the name of the column, without the indexer. This syntax can also be used to create a
new column or reset the values of an entire column.

# Create a new History column with array of random values
>>> grades['History'] = np.random.randint(0,100,6)
>>> grades['History']
Barbara 4
David 92
Eleanor 25
Greg 79
Lauren 82
Mark 27
Name: History, dtype: int64

# Reset the column such that everyone has a 100
>>> grades['History'] = 100.0
>>> grades

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0
Eleanor 35.0 NaN 100.0
Greg NaN 26.0 100.0
Lauren NaN 99.0 100.0
Mark 81.0 68.0 100.0
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Datasets can often be very large and thus difficult to visualize. Pandas has various methods to
make this easier. The methods head and tail will show the first or last n data points, respectively,
where n defaults to 5. The method sample will draw n random entries of the dataset, where n
defaults to 1.

# Use head to see the first n rows
>>> grades.head(n=2)

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0

# Use sample to sample a random entry
>>> grades.sample()

Math English History
Lauren NaN 99.0 100.0

It may also be useful to re-order the columns or rows or sort according to a given column.

# Re-order columns
>>> grades.reindex(columns=['English','Math','History'])

English Math History
Barbara 73.0 52.0 100.0
David 39.0 10.0 100.0
Eleanor NaN 35.0 100.0
Greg 26.0 NaN 100.0
Lauren 99.0 NaN 100.0
Mark 68.0 81.0 100.0

# Sort descending according to Math grades
>>> grades.sort_values('Math', ascending=False)

Math English History
Mark 81.0 68.0 100.0
Barbara 52.0 73.0 100.0
Eleanor 35.0 NaN 100.0
David 10.0 39.0 100.0
Greg NaN 26.0 100.0
Lauren NaN 99.0 100.0

Other methods used for manipulating DataFrame and Series panda structures can be found in Table
1.2.
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Method Description
append() Concatenate two or more Series.

drop() Remove the entries with the specified label or labels
drop_duplicates() Remove duplicate values

dropna() Drop null entries
fillna() Replace null entries with a specified value or strategy

reindex() Replace the index
sample() Draw a random entry
shift() Shift the index

unique() Return unique values

Table 1.2: Methods for managing or modifying data in a pandas Series or DataFrame.

Problem 1. The file budget.csv contains the budget of a college student over the course of 4
years. Write a function that performs the following operations in this order:

1. Read in budget.csv as a DataFrame with the index as column 0. Hint: Use index_col=0
to set the first column as the index when reading in the csv.

2. Reindex the columns such that amount spent on groceries is the first column and all other
columns maintain the same ordering.

3. Sort the DataFrame in descending order by how much money was spent on Groceries.

4. Reset all values in the 'Rent' column to 800.0.

5. Reset all values in the first 5 data points to 0.0.

Return the values of the updated DataFrame as a NumPy array.

Basic Data Manipulation

Because the primary pandas data structures are based off of ndarray, most NumPy functions work
with pandas structures. For example, basic vector operations work as would be expected:

# Sum history and english grades of all students
>>> grades['English'] + grades['History']
Barbara 173.0
David 139.0
Eleanor NaN
Greg 126.0
Lauren 199.0
Mark 168.0
dtype: float64

# Double all Math grades
>>> grades['Math']*2
Barbara 104.0
David 20.0
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Eleanor 70.0
Greg NaN
Lauren NaN
Mark 162.0
Name: Math, dtype: float64

In addition to arithmetic, Series has a variety of other methods similar to NumPy arrays. A
collection of these methods is found in Table 1.3.

Method Returns
abs() Object with absolute values taken (of numerical data)

idxmax() The index label of the maximum value
idxmin() The index label of the minimum value
count() The number of non-null entries

cumprod() The cumulative product over an axis
cumsum() The cumulative sum over an axis

max() The maximum of the entries
mean() The average of the entries

median() The median of the entries
min() The minimum of the entries

mode() The most common element(s)
prod() The product of the elements
sum() The sum of the elements
var() The variance of the elements

Table 1.3: Numerical methods of the Series and DataFrame pandas classes.

Basic Statistical Functions

The pandas library allows us to easily calculate basic summary statistics of our data, which can be
useful when we want a quick description of the data. The describe() function outputs several such
summary statistics for each column in a DataFrame:

# Use describe to better understand the data
>>> grades.describe()

Math English History
count 4.000000 5.00000 6.0
mean 44.500000 61.00000 100.0
std 29.827281 28.92231 0.0
min 10.000000 26.00000 100.0
25% 28.750000 39.00000 100.0
50% 43.500000 68.00000 100.0
75% 59.250000 73.00000 100.0
max 81.000000 99.00000 100.0

Functions for calculating means and variances, the covariance and correlation matrices, and
other basic statistics are also available.

# Find the average grade for each student
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>>> grades.mean(axis=1)
Barbara 75.000000
David 49.666667
Eleanor 67.500000
Greg 63.000000
Lauren 99.500000
Mark 83.000000
dtype: float64

# Give correlation matrix between subjects
>>> grades.corr()

Math English History
Math 1.00000 0.84996 NaN
English 0.84996 1.00000 NaN
History NaN NaN NaN

The method rank() can be used to rank the values in a data set, either within each entry or
with each column. This function defaults ranking in ascending order: the least will be ranked 1 and
the greatest will be ranked the highest number.

# Rank each student's performance in their classes in descending order
# (best to worst)
# The method keyword specifies what rank to use when ties occur.
>>> grades.rank(axis=1,method='max',ascending=False)

Math English History
Barbara 3.0 2.0 1.0
David 3.0 2.0 1.0
Eleanor 2.0 NaN 1.0
Greg NaN 2.0 1.0
Lauren NaN 2.0 1.0
Mark 2.0 3.0 1.0

These methods can be very effective in interpreting data. For example, the rank() example
above shows use that Barbara does best in History, then English, and then Math.

Dealing with Missing Data

Missing data is a ubiquitous problem in data science. Fortunately, pandas is particularly well-suited
to handling missing or anomalous data. As we have already seen, the pandas default for a missing
value is NaN. In basic arithmetic operations, if one of the operands is NaN, then the output is also NaN.
If we are not interested in the missing values, we can simply drop them from the data altogether, or
we can fill them with some other value, such as the mean. NaN might also mean something specific,
such as some default value, which should inform what to do with NaN values.

# Grades with all NaN values dropped
>>> grades.dropna()

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0
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Mark 81.0 68.0 100.0

# fill missing data with 50.0
>>> grades.fillna(50.0)

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0
Eleanor 35.0 50.0 100.0
Greg 50.0 26.0 100.0
Lauren 50.0 99.0 100.0
Mark 81.0 68.0 100.0

When dealing with missing data, make sure you are aware of the behavior of the pandas
functions you are using. For example, sum() and mean() ignore NaN values in the computation.

Achtung!

Always consider missing data carefully when analyzing a dataset. It may not always be helpful
to drop the data or fill it in with a random number. Consider filling the data with the mean
of surrounding data or the mean of the feature in question. Overall, the choice for how to fill
missing data should make sense with the dataset.

Problem 2. Write a function which uses budget.csv to answer the questions "Which category
affects living expenses the most? Which affects other expenses the most?" Perform the following
manipulations:

1. Fill all NaN values with 0.0.

2. Create two new columns, 'Living Expenses' and 'Other'. Set the value of 'Living
Expenses' to be the sum of the columns 'Rent', 'Groceries', 'Gas' and 'Utilities
'. Set the value of 'Other' to be the sum of the columns 'Dining Out', 'Out With
Friends' and 'Netflix'.

3. Identify which column, other than 'Living Expenses', correlates most with 'Living
Expenses' and which column, other than 'Other', correlates most with 'Other'. This
can indicate which columns in the budget affect the overarching categories the most.

Return the names of each of those columns as a tuple. The first should be of the column
corresponding to 'Living Expenses' and the second to 'Other'.

Complex Operations in Pandas
Often times, the data that we have is not exactly the data we want to analyze. In cases like this we
use more complex data manipulation tools to access only the data that we need.

For the examples below, we will use the following data:
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>>> name = ['Mylan', 'Regan', 'Justin', 'Jess', 'Jason', 'Remi', 'Matt',
... 'Alexander', 'JeanMarie']
>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']
>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]
>>> rank = ['Sp', 'Se', 'Fr', 'Se', 'Sp', 'J', 'J', 'J', 'Se']
>>> ID = range(9)
>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']
>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]
>>> mathID = [0, 1, 5, 6, 3]
>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]
>>> major = ['y', 'n', 'y', 'n', 'n']
>>> studentInfo = pd.DataFrame({'ID': ID, 'Name': name, 'Sex': sex, 'Age': age,
... 'Class': rank})
>>> otherInfo = pd.DataFrame({'ID': ID, 'GPA': GPA, 'Financial_Aid': aid})
>>> mathInfo = pd.DataFrame({'ID': mathID, 'Grade': mathGd, 'Math_Major':
... major})

Before querying our data, it is helpful to know some of its basic properties, such as number of
columns, number of rows, and the datatypes of the columns. This can be done by simply calling the
info() method on the desired DataFrame:

>>> mathInfo.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 0 to 4
Data columns (total 3 columns):
Grade 5 non-null float64
ID 5 non-null int64
Math_Major 5 non-null object
dtypes: float64(1), int64(1), object(1)

Masks

Sometimes, we only want to access data from a single column. For example if we want to only access
the ID of the students in the studentInfo DataFrame, then we would use the following syntax.

# Get the ID column from studentInfo
>>> studentInfo.ID # or studentInfo['ID']

ID
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
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If we want to access multiple columns at once we can use a list of column names.

# Get the ID and Age columns.
>>> studentInfo[['ID', 'Age']]

ID Age
0 0 20
1 1 21
2 2 18
3 3 22
4 4 19
5 5 20
6 6 20
7 7 19
8 8 29

Now we can access the specific columns that we want. However, some of these columns may
still contain data points that we don’t want to consider. In this case we can build a mask. Each
mask that we build will return a pandas Series object with a bool value at each index indicating if
the condition is satisfied.

# Create a mask for all student receiving financial aid.
>>> mask = otherInfo['Financial_Aid'] == 'y'
# Access other info where the mask is true and display the ID and GPA ←↩

columns.
>>> otherInfo[mask][['ID', 'GPA']]

ID GPA
0 0 3.8
3 3 3.9
7 7 3.4

We can also create compound masks with multiple statements. We do this using the same
syntax you would use for a compound mask in a normal NumPy array. Useful operators are &, the
AND operator; |, the OR operator; and ∼, the NOT operator.

# Get all student names where Class = 'J' OR Class = 'Sp'.
>>> mask = (studentInfo.Class == 'J') | (studentInfo.Class == 'Sp')
>>> studentInfo[mask].Name
0 Mylan
4 Jason
5 Remi
6 Matt
7 Alexander
Name: Name, dtype: object
# This can also be acomplished with the following command:
# studentInfo[studentInfo['Class'].isin(['J','Sp'])]['Name']
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Problem 3. Read in the file crime_data.csv as a pandas object. The file contains data on
types of crimes in the U.S. from 1960 to 2016. Set the index as the column 'Year'. Answer
the following questions using the pandas methods learned in this lab. The answer of each
question should be saved as indicated. Return the answers to all three questions as a tuple (i.e.
(answer_1,answer_2,answer_3)).

1. Identify the three crimes that have a mean yearly number of occurences over 1,500,000.
Of these three crimes, which two are very correlated? Which of these two crimes has
a greater maximum value? Save the title of this column as a variable to return as the
answer.

2. Examine the data from 2000 and later. Sort this data (in ascending order) according
to number of murders. Find the years where aggravated assault is greater than 850,000.
Save the indices (the years) of the masked and reordered DataFrame as a NumPy array
to return as the answer.

3. What year had the highest crime rate? In this year, which crime was committed the
most? What percentage of the total crime that year was it? Save this value as a float.

Working with Dates and Times

The datetime module in the standard library provides a few tools for representing and operating
on dates and times. The datetime.datetime object represents a time stamp: a specific time of day
on a certain day. Its constructor accepts a four-digit year, a month (starting at 1 for January), a
day, and, optionally, an hour, minute, second, and microsecond. Each of these arguments must be
an integer, with the hour ranging from 0 to 23.

>>> from datetime import datetime

# Represent November 18th, 1991, at 2:01 PM.
>>> bday = datetime(1991, 11, 18, 14, 1)
>>> print(bday)
1991-11-18 14:01:00

# Find the number of days between 11/18/1991 and 11/9/2017.
>>> dt = datetime(2017, 11, 9) - bday
>>> dt.days
9487

The datetime.datetime object has a parser method, strptime(), that converts a string into
a new datetime.datetime object. The parser is flexible so the user must specify the format that
the dates are in. For example, if the dates are in the format "Month/Day//Year::Hour", specify
format"=%m/%d//%Y::%H" to parse the string appropriately. See Table 1.4 for formatting options.
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Pattern Description
%Y 4-digit year
%y 2-digit year
%m 1- or 2-digit month
%d 1- or 2-digit day
%H Hour (24-hour)
%I Hour (12-hour)
%M 2-digit minute
%S 2-digit second

Table 1.4: Formats recognized by datetime.strptime()

>>> print(datetime.strptime("1991-11-18 / 14:01", "%Y-%m-%d / %H:%M"),
... datetime.strptime("1/22/1996", "%m/%d/%Y"),
... datetime.strptime("19-8, 1998", "%d-%m, %Y"), sep='\n')
1991-11-18 14:01:00 # The date formats are now standardized.
1996-01-22 00:00:00 # If no hour/minute/seconds data is given,
1998-08-19 00:00:00 # the default is midnight.

Converting Dates to an Index

The TimeStamp class is the pandas equivalent to a datetime.datetime object. A pandas index com-
posed of TimeStamp objects is a DatetimeIndex, and a Series or DataFrame with a DatetimeIndex
is called a time series. The function pd.to_datetime() converts a collection of dates in a parsable
format to a DatetimeIndex. The format of the dates is inferred if possible, but it can be specified
explicitly with the same syntax as datetime.strptime().

>>> import pandas as pd

# Convert some dates (as strings) into a DatetimeIndex.
>>> dates = ["2010-1-1", "2010-2-1", "2012-1-1", "2012-1-2"]
>>> pd.to_datetime(dates)
DatetimeIndex(['2010-01-01', '2010-02-01', '2012-01-01', '2012-01-02'],

dtype='datetime64[ns]', freq=None)

# Create a time series, specifying the format for the DatetimeIndex.
>>> dates = ["1/1, 2010", "1/2, 2010", "1/1, 2012", "1/2, 2012"]
>>> date_index = pd.to_datetime(dates, format="%m/%d, %Y")
>>> pd.Series([x**2 for x in range(4)], index=date_index)
2010-01-01 0
2010-01-02 1
2012-01-01 4
2012-01-02 9
dtype: int64
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Problem 4. The file DJIA.csv contains daily closing values of the Dow Jones Industrial Av-
erage from 2006–2016. Read the data into a Series or DataFrame with a DatetimeIndex as
the index. Drop any rows without numerical values, cast the "VALUE" column to floats, then
return the updated DataFrame.

Hint: You can change the column type the same way you’d change a numpy array type.

Generating Time-based Indices

Some time series datasets come without explicit labels but have instructions for deriving timestamps.
For example, a list of bank account balances might have records from the beginning of every month,
or heart rate readings could be recorded by an app every 10 minutes. Use pd.date_range() to
generate a DatetimeIndex where the timestamps are equally spaced. The function is analogous to
np.arange() and has the following parameters:

Parameter Description
start Starting date

end End date
periods Number of dates to include

freq Amount of time between consecutive dates
normalize Normalizes the start and end times to midnight

Table 1.5: Parameters for pd.date_range().

Exactly three of the parameters start, end, periods, and freq must be specified to gen-
erate a range of dates. The freq parameter accepts a variety of string representations, referred
to as offset aliases. See Table 1.6 for a sampling of some of the options. For a complete list
of the options, see https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.
html#timeseries-offset-aliasesl.

Parameter Description
"D" calendar daily (default)
"B" business daily (every business day)
"H" hourly
"T" minutely
"S" secondly

"MS" first day of the month (Month Start)
"BMS" first business day of the month (Business Month Start)

"W-MON" every Monday (Week-Monday)
"WOM-3FRI" every 3rd Friday of the month (Week of the Month - 3rd Friday)

Table 1.6: Options for the freq parameter to pd.date_range().

# Create a DatetimeIndex for 5 consecutive days starting on September 28, 2016.
>>> pd.date_range(start='9/28/2016 16:00', periods=5)
DatetimeIndex(['2016-09-28 16:00:00', '2016-09-29 16:00:00',

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliasesl
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliasesl
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'2016-09-30 16:00:00', '2016-10-01 16:00:00',
'2016-10-02 16:00:00'],

dtype='datetime64[ns]', freq='D')

# Create a DatetimeIndex with the first weekday of every other month in 2016.
>>> pd.date_range(start='1/1/2016', end='1/1/2017', freq="2BMS" )
DatetimeIndex(['2016-01-01', '2016-03-01', '2016-05-02', '2016-07-01',

'2016-09-01', '2016-11-01'],
dtype='datetime64[ns]', freq='2BMS')

# Create a DatetimeIndex for 10 minute intervals between 4:00 PM and 4:30 PM on←↩
September 9, 2016.

>>> pd.date_range(start='9/28/2016 16:00',
end='9/28/2016 16:30', freq="10T")

DatetimeIndex(['2016-09-28 16:00:00', '2016-09-28 16:10:00',
'2016-09-28 16:20:00', '2016-09-28 16:30:00'],

dtype='datetime64[ns]', freq='10T')

# Create a DatetimeIndex for 2 hour 30 minute intervals between 4:30 PM and ←↩
2:30 AM on September 29, 2016.

>>> pd.date_range(start='9/28/2016 16:30', periods=5, freq="2h30min")
DatetimeIndex(['2016-09-28 16:30:00', '2016-09-28 19:00:00',

'2016-09-28 21:30:00', '2016-09-29 00:00:00',
'2016-09-29 02:30:00'],

dtype='datetime64[ns]', freq='150T')

Problem 5. The file paychecks.csv contains values of an hourly employee’s last 93 paychecks.
Paychecks are given every other Friday, starting on March 14, 2008, and the employee started
working on March 13, 2008.

Read in the data, using pd.date_range() to generate the DatetimeIndex. Set this as
the new index of the DataFrame and return the DataFrame.

Elementary Time Series Analysis

Shifting

DataFrame and Series objects have a shift() method that allows you to move data up or down
relative to the index. When dealing with time series data, we can also shift the DatetimeIndex
relative to a time offset.

>>> df = pd.DataFrame(dict(VALUE=np.random.rand(5)),
index=pd.date_range("2016-10-7", periods=5, freq='D'))

>>> df
VALUE

2016-10-07 0.127895
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2016-10-08 0.811226
2016-10-09 0.656711
2016-10-10 0.351431
2016-10-11 0.608767

>>> df.shift(1)
VALUE

2016-10-07 NaN
2016-10-08 0.127895
2016-10-09 0.811226
2016-10-10 0.656711
2016-10-11 0.351431

>>> df.shift(-2)
VALUE

2016-10-07 0.656711
2016-10-08 0.351431
2016-10-09 0.608767
2016-10-10 NaN
2016-10-11 NaN

>>> df.shift(14, freq="D")
VALUE

2016-10-21 0.127895
2016-10-22 0.811226
2016-10-23 0.656711
2016-10-24 0.351431
2016-10-25 0.608767

Shifting data makes it easy to gather statistics about changes from one timestamp or period to
the next.

# Find the changes from one period/timestamp to the next
>>> df - df.shift(1) # Equivalent to df.diff().

VALUE
2016-10-07 NaN
2016-10-08 0.683331
2016-10-09 -0.154516
2016-10-10 -0.305279
2016-10-11 0.257336

Problem 6. Compute the following information about the DJIA dataset from Problem 4 that
has a DateTimeIndex.

• The single day with the largest gain.

• The single day with the largest loss.
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Return the DateTimeIndex of the day with the largest gain and the day with the largest loss.
(Hint: Call your function from Problem 4 to get the DataFrame already cleaned and with

DatetimeIndex).

More information on how to use datetime with Pandas is in the additional material section.
This includes working with Periods and more analysis with time series.
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Additional Material
SQL Operations in pandas

DataFrames are tabular data structures bearing an obvious resemblance to a typical relational
database table. SQL is the standard for working with relational databases; however, pandas can
accomplish many of the same tasks as SQL. The SQL-like functionality of pandas is one of its
biggest advantages, eliminating the need to switch between programming languages for different
tasks. Within pandas, we can handle both the querying and data analysis.

For the examples below, we will use the following data:

>>> name = ['Mylan', 'Regan', 'Justin', 'Jess', 'Jason', 'Remi', 'Matt',
... 'Alexander', 'JeanMarie']
>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']
>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]
>>> rank = ['Sp', 'Se', 'Fr', 'Se', 'Sp', 'J', 'J', 'J', 'Se']
>>> ID = range(9)
>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']
>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]
>>> mathID = [0, 1, 5, 6, 3]
>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]
>>> major = ['y', 'n', 'y', 'n', 'n']
>>> studentInfo = pd.DataFrame({'ID': ID, 'Name': name, 'Sex': sex, 'Age': age,
... 'Class': rank})
>>> otherInfo = pd.DataFrame({'ID': ID, 'GPA': GPA, 'Financial_Aid': aid})
>>> mathInfo = pd.DataFrame({'ID': mathID, 'Grade': mathGd, 'Math_Major':
... major})

SQL SELECT statements can be done by column indexing. WHERE statements can be in-
cluded by adding masks (just like in a NumPy array). The method isin() can also provide a useful
WHERE statement. This method accepts a list, dictionary, or Series containing possible values of
the DataFrame or Series. When called upon, it returns a Series of booleans, indicating whether
an entry contained a value in the parameter pass into isin().

# SELECT ID, Age FROM studentInfo
>>> studentInfo[['ID', 'Age']]

ID Age
0 0 20
1 1 21
2 2 18
3 3 22
4 4 19
5 5 20
6 6 20
7 7 19
8 8 29

# SELECT ID, GPA FROM otherInfo WHERE Financial_Aid = 'y'
>>> mask = otherInfo['Financial_Aid'] == 'y'
>>> otherInfo[mask][['ID', 'GPA']]
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ID GPA
0 0 3.8
3 3 3.9
7 7 3.4

# SELECT Name FROM studentInfo WHERE Class = 'J' OR Class = 'Sp'
>>> studentInfo[studentInfo['Class'].isin(['J','Sp'])]['Name']
0 Mylan
4 Jason
5 Remi
6 Matt
7 Alexander
Name: Name, dtype: object

Next, let’s look at JOIN statements. In pandas, this is done with the merge function. merge
takes the two DataFrame objects to join as parameters, as well as keyword arguments specifying the
column on which to join, along with the type (left, right, inner, outer).

# SELECT * FROM studentInfo INNER JOIN mathInfo ON studentInfo.ID = mathInfo.ID
>>> pd.merge(studentInfo, mathInfo, on='ID') # INNER JOIN is the default

Age Class ID Name Sex Grade Math_Major
0 20 Sp 0 Mylan M 4.0 y
1 21 Se 1 Regan F 3.0 n
2 22 Se 3 Jess F 4.0 n
3 20 J 5 Remi F 3.5 y
4 20 J 6 Matt M 3.0 n
[5 rows x 7 columns]

# SELECT GPA, Grade FROM otherInfo FULL OUTER JOIN mathInfo ON otherInfo.
# ID = mathInfo.ID
>>> pd.merge(otherInfo, mathInfo, on='ID', how='outer')[['GPA', 'Grade']]

GPA Grade
0 3.8 4.0
1 3.5 3.0
2 3.0 NaN
3 3.9 4.0
4 2.8 NaN
5 2.9 3.5
6 3.8 3.0
7 3.4 NaN
8 3.7 NaN
[9 rows x 2 columns]
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More Datetime with Pandas

Periods

A pandas Timestamp object represents a precise moment in time on a given day. Some data, however,
is recorded over a time interval, and it wouldn’t make sense to place an exact timestamp on any of
the measurements. For example, a record of the number of steps walked in a day, box office earnings
per week, quarterly earnings, and so on. This kind of data is better represented with the pandas
Period object and the corresponding PeriodIndex.

The Period class accepts a value and a freq. The value parameter indicates the label for a
given Period. This label is tied to the end of the defined Period. The freq indicates the length of
the Period and in some cases can also indicate the offset of the Period. The default value for freq
is "M" for months. The freq parameter accepts the majority, but not all, of frequencies listed in
Table 1.6.

# Creates a period for month of Oct, 2016.
>>> p1 = pd.Period("2016-10")
>>> p1.start_time # The start and end times of the period
Timestamp('2016-10-01 00:00:00') # are recorded as Timestamps.
>>> p1.end_time
Timestamp('2016-10-31 23:59:59.999999999')

# Represent the annual period ending in December that includes 10/03/2016.
>>> p2 = pd.Period("2016-10-03", freq="A-DEC")
>>> p2.start_time
Timestamp('2016-01-01 00:00:00')
> p2.end_time
Timestamp('2016-12-31 23:59:59.999999999')

# Get the weekly period ending on a Saturday that includes 10/03/2016.
>>> print(pd.Period("2016-10-03", freq="W-SAT"))
2016-10-02/2016-10-08

Like the pd.date_range() method, the pd.period_range() method is useful for generating a
PeriodIndex for unindexed data. The syntax is essentially identical to that of pd.date_range().
When using pd.period_range(), remember that the freq parameter marks the end of the period.
After creating a PeriodIndex, the freq parameter can be changed via the asfreq() method.

# Represent quarters from 2008 to 2010, with Q4 ending in December.
>>> pd.period_range(start="2008", end="2010-12", freq="Q-DEC")
PeriodIndex(['2008Q1', '2008Q2', '2008Q3', '2008Q4', '2009Q1', '2009Q2',

'2009Q3', '2009Q4', '2010Q1', '2010Q2', '2010Q3', '2010Q4'],
dtype='period[Q-DEC]', freq='Q-DEC')

# Get every three months form March 2010 to the start of 2011.
>>> p = pd.period_range("2010-03", "2011", freq="3M")
>>> p
PeriodIndex(['2010-03', '2010-06', '2010-09', '2010-12'],

dtype='period[3M]', freq='3M')
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# Change frequency to be quarterly.
>>> p.asfreq("Q-DEC")
PeriodIndex(['2010Q2', '2010Q3', '2010Q4', '2011Q1'],

dtype='period[Q-DEC]', freq='Q-DEC')

The bounds of a PeriodIndex object can be shifted by adding or subtracting an integer.
PeriodIndex will be shifted by n × freq.

# Shift index by 1
>>> p -= 1
>>> p
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],

dtype='int64', freq='Q-DEC')

If for any reason you need to switch from periods to timestamps, pandas provides a very simple
method to do so. The how parameter can be start or end and determines if the timestamp is the
beginning or the end of the period. Similarly, you can switch from timestamps to periods.

# Convert to timestamp (last day of each quarter)
>>> p = p.to_timestamp(how='end')
>>> p
DatetimeIndex(['2010-03-31', '2010-06-30', '2010-09-30', '2010-12-31'],

dtype='datetime64[ns]', freq='Q-DEC')

>>> p.to_period("Q-DEC")
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],

dtype='int64', freq='Q-DEC')

Operations on Time Series

There are certain operations only available to Series and DataFrames that have a DatetimeIndex.
A sampling of this functionality is described throughout the remainder of this lab.

Slicing

Slicing is much more flexible in pandas for time series. We can slice by year, by month, or even use
traditional slicing syntax to select a range of dates.

# Select all rows in a given year
>>> df["2010"]

0 1
2010-01-01 0.566694 1.093125
2010-02-01 -0.219856 0.852917
2010-03-01 1.511347 -1.324036

# Select all rows in a given month of a given year
>>> df["2012-01"]

0 1
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2012-01-01 0.212141 0.859555
2012-01-02 1.483123 -0.520873
2012-01-03 1.436843 0.596143

# Select a range of dates using traditional slicing syntax
>>> df["2010-1-2":"2011-12-31"]

0 1
2010-02-01 -0.219856 0.852917
2010-03-01 1.511347 -1.324036
2011-01-01 0.300766 0.934895

Resampling

Some datasets do not have datapoints at a fixed frequency. For example, a dataset of website traffic
has datapoints that occur at irregular intervals. In situations like these, resampling can help provide
insight on the data.

The two main forms of resampling are downsampling, aggregating data into fewer intervals, and
upsampling, adding more intervals.

To downsample, use the resample() method of the Series or DataFrame. This method is
similar to groupby() in that it groups different entries together. Then aggregation produces a new
data set. The first parameter to resample() is an offset string from Table 1.6: "D" for daily, "H" for
hourly, and so on.

>>> import numpy as np

# Get random data for every day from 2000 to 2010.
>>> dates = pd.date_range(start="2000-1-1", end='2009-12-31', freq='D')
>>> df = pd.Series(np.random.random(len(days)), index=dates)
>>> df
2000-01-01 0.559
2000-01-02 0.874
2000-01-03 0.774

...
2009-12-29 0.837
2009-12-30 0.472
2009-12-31 0.211
Freq: D, Length: 3653, dtype: float64

# Group the data by year.
>>> years = df.resample("A") # 'A' for 'annual'.
>>> years.agg(len) # Number of entries per year.
2000-12-31 366.0
2001-12-31 365.0
2002-12-31 365.0

...
2007-12-31 365.0
2008-12-31 366.0
2009-12-31 365.0
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Freq: A-DEC, dtype: float64

>>> years.mean() # Average entry by year.
2000-12-31 0.491
2001-12-31 0.514
2002-12-31 0.484

...
2007-12-31 0.508
2008-12-31 0.521
2009-12-31 0.523
Freq: A-DEC, dtype: float64

# Group the data by month.
>>> months = df.resample("M")
>>> len(months.mean()) # 12 months x 10 years = 120 months.
120

Elementary Time Series Analysis

Rolling Functions and Exponentially-Weighted Moving Functions

Many time series are inherently noisy. To analyze general trends in data, we use rolling functions
and exponentally-weighted moving (EWM) functions. Rolling functions, or moving window functions,
perform a calculation on a window of data. There are a few rolling functions that come standard
with pandas.

Rolling Functions (Moving Window Functions)

One of the most commonly used rolling functions is the rolling average, which takes the average value
over a window of data.

# Generate a time series using random walk from a uniform distribution.
N = 10000
bias = 0.01
s = np.zeros(N)
s[1:] = np.random.uniform(low=-1, high=1, size=N-1) + bias
s = pd.Series(s.cumsum(),

index=pd.date_range("2015-10-20", freq='H', periods=N))

# Plot the original data together with a rolling average.
ax1 = plt.subplot(121)
s.plot(color="gray", lw=.3, ax=ax1)
s.rolling(window=200).mean().plot(color='r', lw=1, ax=ax1)
ax1.legend(["Actual", "Rolling"], loc="lower right")
ax1.set_title("Rolling Average")

The function call s.rolling(window=200) creates a pd.core.rolling.Window object that can
be aggregated with a function like mean(), std(), var(), min(), max(), and so on.
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Exponentially-Weighted Moving (EWM) Functions

Whereas a moving window function gives equal weight to the whole window, an exponentially-weighted
moving function gives more weight to the most recent data points.

In the case of a exponentially-weighted moving average (EWMA), each data point is calculated
as follows.

zi = αx̄i + (1− α)zi−1,

where zi is the value of the EWMA at time i, x̄i is the average for the i-th window, and α is the
decay factor that controls the importance of previous data points. Notice that α = 1 reduces to the
rolling average.

More commonly, the decay is expressed as a function of the window size. In fact, the span for
an EWMA is nearly analogous to window size for a rolling average.

Notice the syntax for EWM functions is very similar to that of rolling functions.
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Figure 1.1: Rolling average and EWMA.

ax2 = plt.subplot(122)
s.plot(color="gray", lw=.3, ax=ax2)
s.ewm(span=200).mean().plot(color='g', lw=1, ax=ax2)
ax2.legend(["Actual", "EWMA"], loc="lower right")
ax2.set_title("EWMA")
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