
1 Predator-Prey and
Weight Change
Models

Lab Objective: We introduce built-in methods for solving Initial Value Problems and apply the
methods to two dynamical systems. The first system looks at the relationship between a predator and
its prey. The second model is a weight change model based on thermodynamics and kinematics.

Predator-Prey Model

ODEs are commonly used to model relationships between predator and prey populations. For exam-
ple, consider the populations of wolves, the predator, and rabbits, the prey, in Yellowstone National
Park. Let r(t) and w(t) represent the rabbit and wolf populations respectively at time t, measured
in years. We will make a few assumptions to simplify our model:

• In the absence of wolves, the rabbit population grows at a positive rate proportional to the
current population. Thus when w(t) = 0, dr/dt = αr(t), where α > 0.

• In the absence of rabbits, the wolves die out. Thus when r(t) = 0, dw/dt = −δw(t), where
δ > 0.

• The number of encounters between rabbits and wolves is proportional to the product of their
populations. The wolf population grows proportional to the number of encounters by βr(t)w(t)

(where β > 0), and the rabbit population decreases proportional to the number of encounters
by −γr(t)w(t) (where γ > 0).

This leads to the following system of ODEs:

dr

dt
= αr − βrw = r(α− βw)

dw

dt
= −δw + γrw = w(−δ + γr)

(1.1)
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Figure 1.1: The solution to the system found in (1.1)

Problem 1. Define the function predator_prey() that accepts the current r(t) and w(t)

values as a 1d array y, and the current time t, and returns the right hand side of (1.1) as an
ndarray. Use α = 1.0, β = 0.5, δ = 0.75, and γ = 0.25 as your growth parameters.
Hint: you will want to use solve_ivp.

Problem 2. Use solve_ivp to solve (1.1) with initial conditions (r0, w0) = (5, 3) and time
ranging from 0 to 20 years. Display the resulting rabbit and wolf populations over time (stored
as rows in the attribute y of the output of solve_ivp) on the same plot. Your graph should
match the graph in figure 1.1.
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Variations on the Predator-Prey

The Lotka-Volterra model

The representation of the predator-prey relationship found in (1.1) is called the Lotka-Volterra
predator-prey model and is typically given by

du

dt
= αu− βuv,

dv

dt
= −δv + γuv.

where u and v represent the prey and predator populations, respectively. Here α, β, δ, and γ are the
same as before but now for an arbitrary prey and predator.

The equlibria (fixed points) of a system occur when the derivatives are zero. In this example,
that occurs at (u, v) = (0, 0) and (u, v) = ( cd ,

a
b ). Visualizing the phase portrait helps to give more

insight into the dynamics of a system. We will do this by first nondimensionalzing our system to
reduce the number of parameters. Let U = γ

δ u, V = β
αv, t̄ = αt, and η = γ

α . Substituting into the
original ODEs we obtain the nondimensional system of equations

dU

dt̄
= U(1 − V ),

dV

dt̄
= ηV (U − 1).

(1.2)

Problem 3. Similar to problem 1, define the function Lotka_volterra() that takes in the
current predator and prey populations as a 1d array y and the current time as a float t and
returns the right hand side of the system (1.2) with η = 1/3.

The following three lines of code plot the phase portrait of (1.2). For more documentation
on quiver plots see the documentation.

Y1, Y2 = np.meshgrid(np.linspace(0, 4.5, 25), np.linspace(0, 4.5, 25))
dU, dV = Lotka_Volterra(0, (Y1, Y2))
Q = plt.quiver(Y1[::3, ::3], Y2[::3, ::3], U[::3, ::3], V[::3, ::3])

Using solve_ivp, solve (1.2) with three different initial conditions y0 = (1/2, 1/3), y0 =

(1/2, 3/4), and y0 = (1/16, 3/4) and time domain t = [0, 13]. Plot these three solutions on
the same graph as the phase portrait and the equilibria (0, 0) and (1, 1).

Since your solutions are being plotted with the phase portrait, plot the two populations
against each other (instead of both individually against time). Your plot should match 1.2.

The Logistic model

Notice that the Lotka-Volterra equations predict prey populations will grow exponentially in the
absence of predators. The logistic predator-prey equations change this dynamic by adding a carrying

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.quiver.html
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Figure 1.2: The phase portrait for the nondimensionalized Lotka-Volterra predator-prey equations
with parameters η = 1/3.

capacity K to the prey population:

du

dt
= αu

(
1 − u

K

)
− βuv,

dv

dt
= −δv + γuv.

We can again do dimensional analysis on this system to simplify parameters. Let U = u
K , V = β

αv,
t̄ = αt, η = γK

α , and ρ = δ
γK . Then the nondimensional logistic equations are

dU

dt̄
= U(1 − U − V ),

dV

dt̄
= ηV (U − ρ).

(1.3)

Problem 4. Define a new function Logistic_Model() that takes in the current predator and
prey populations y and the current time t and returns the right hand side of (1.3) as a tuple. Use
solve_ivp to compute solutions (U, V ) of (1.3) for initial conditions (1/3, 1/3) and (1/2, 1/5)

with (t0, tf) = (0, 13). Do this for parameter values η, ρ = 1, 0.3 and also for values η, ρ = 1,
1.1.

Create a phase portrait for the logistic equations using both sets of parameter values. Plot
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the direction field, all equilibrium points, and both solution orbits on the same plot for each
set of parameter values.

A Weight Change Model
The main idea behind weight change is simple. If a person takes in more energy than they expend,
they gain weight. If they take in less than they expend, they lose weight. Let energy balance EB be
the difference between energy intake EI and energy expenditure EE, so that

EB = EI − EE.

If the balance is positive, weight is gained and similarly if the balance is negative, weight is lost.
A person’s body weight at a time t can be expressed as the sum of the weight of their fat tissue

F (t) and the weight of their lean tissue L(t); that is, BW (t) = F (t) + L(t). Using this, the change
in body weight can be expressed as the following system of ODEs:

dF

dt
=

(1 − p(t))EB(t)

ρF
,

dL

dt
=
p(t)EB(t)

ρL
,

(1.4)

where (1 − p(t)) and p(t) represent the proportion of the energy balance (EB(t)) that results in a
change in the quantity of fatty or lean tissue, respectively. The constants ρF and ρL represent the
energy density of fatty and lean tissue, approximated as ρF = 9400 kcal/kg and ρL = 1800 kcal/kg.

To solve this system, we first need to express p(t) and EB(t) in terms of F and L. These
functions will also depend on physical activity level, PAL, and energy intake, EI, which vary among
individuals.

We will find an expression for p(t) using Forbes’ Law1 which states that

dF

dL
=

F

10.4
.

Notice

F

10.4
=
dF

dL
=
dF/dt

dL/dt
=

(1 − p(t))EB(t)

ρF
p(t)EB(t)

ρL

=
ρL
ρF

1 − p(t)

p(t)
.

Solving for p(t) gives Forbes’ equation

p(t) =
C

C + F (t)
where C = 10.4

ρL
ρF
. (1.5)

We will now find an expression for EB(t). Recall EB(t) = EI − EE. We will use the following
expression for energy expenditure (EE) to define EB(t).

EE = PAL×RMR (1.6)

where PAL is physical activity level (as previously mentioned) and RMR is resting metabolic rate.
Physical activity level can be determined using the table above.

1Lean body mass-body fat interrelationships in humans, Forbes, G.B.; Nutrition reviews, pgs 225-231, 1987.
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1.40–1.69 People who are sedentary and do not exercise regularly, spend
most of their time sitting, standing, with little body displacement

1.70–1.99 People who are active, with frequent body displacement throughout
the day or who exercise frequently

2.00–2.40 People who engage regularly in strenuous work or exercise for
several hours each day

Table 1.1: This is a rough guide for physical activity level (PAL).

We will use the following equation for computing RMR,

RMR = K + γFF (t) + γLL(t) + ηF
dF

dt
+ ηL

dL

dt
+ βatEI, (1.7)

where γF = 3.2 kcal/kg/d, γL = 22 kcal/kg/d, ηF = 180 kcal/kg, and ηL = 230 kcal/kg 2 3. Further,
we let βat = 0.14 denote the coefficient for adaptive thermogenesis. Finally, we remark that the
constant K can be tuned to an individual’s body type directly through RMR and fat measurement,
and is assumed to remain constant over time.

Thus, since the input EI is assumed to be known, we can use (1.6), (1.7) and (1.5) to write
(1.4) in terms of F and L, thus allowing us to close the system of ODEs.

Specifically, we have

RMR =
EE

PAL
= K + γFF (t) + γLL(t) + ηF

dF

dt
+ ηL

dL

dt
+ βatEI

1

PAL
(EE − EI + EI) = K + γFF (t) + γLL(t)

+

(
ηF
ρF

(1 − p(t)) +
ηL
ρL
p(t)

)
EB(t) + βatEI.(

1

PAL
− βat

)
EI = K + γFF (t) + γLL(t)

+

(
ηF
ρF

(1 − p(t)) +
ηL
ρL
p(t) +

1

PAL

)
EB(t).

Solving for EB(t) in the last equation yields

EB(t) =

(
1

PAL
− βat

)
EI −K − γFF (t) − γLL(t)

ηF
ρF

(1 − p(t)) +
ηL
ρL
p(t) +

1

PAL

. (1.8)

In equilibrium (EB = 0), this gives us

K =

(
1

PAL
− βat

)
EI − γFF − γLL. (1.9)

Thus, for a subject who has maintained the same weight for a while, one can determine K by using
(1.9), if they know their average caloric intake and amount of fat (assume L = BW − F ).

2Modeling weight-loss maintenance to help prevent body weight regain; Hall, K.D. and Jordan, P.N.; The American
journal of clinical nutrition, pg 1495, 2008

3Quantification of the effect of energy imbalance on bodyweight ; Hall, K.D. et al.; The Lancet, pgs 826-837, 2011
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Figure 1.3: The solution of the weight change model for problem 6.

Problem 5. Write a function forbes() which takes as input F, the weight of fat tissue at a
given time (i.e. the function F (t) evaluated at a certain time), and returns Forbe’s equation
given in (1.5). Also write the function energy_balance() which takes as input F, L, PAL, and
EI and returns the energy balance as given in (1.8). In energy_balance() we also have that F
is the fat tissue weight at a given time, and L is the lean tissue weight at a given time.

Using forbes() and energy_balance(), define the function weight_odesystem() which
takes as input the current time as a float t and the current fat and lean weights as an array y
and returns the right hand side of (1.4) as a tuple.

Use ρF = 9400, ρL = 1800, γF = 3.2, γL = 22, ηF = 180, ηL = 230, K = 0 and
βAT = 0.14.

Hint: The functions forbes() and energy_balance() are not time dependent in the
same way equations (1.5) and (1.8) are. The time dependent portions of these functions, F (t)

and L(t), are determined by what will be input from the y argument of weight_odesystem().

Problem 6. Consider the initial value problem corresponding to (1.4). The following function
returns the fat mass of an individual based on body weight (kg), age (years), height (meters),
and sex. Use this function to define initial conditions F0 and L0 for the IVP above: F0 =
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fat_mass(args∗), L0 = BW − F0.

def fat_mass(BW, age, H, sex):
BMI = BW / H**2.
if sex == 'male':

return BW * (-103.91 + 37.31 * log(BMI) + 0.14 * age) / 100
else:

return BW * (-102.01 + 39.96 * log(BMI) + 0.14 * age) / 100

Suppose a 38 year old female, standing 5’8” and weighing 160 lbs, reduces her intake
from 2143 to 2025 calories/day, and increases her physical activity from little to no exercise
(PAL=1.4) to exercising to 2-3 days per week (PAL=1.5).

Use (1.9) and the original intake and phyical activity levels to compute K for this system.
Then use solve_ivp to solve the IVP. Graph the solution curve for this single-stage weightloss
intervention over a period of 5 years. Your plot should match figure 1.3.

Note the provided code requires quantities in metric units (kilograms, meters, days) while
our graph is converted to units of pounds and days. Use the conversions 1 lb = 2.204 kg, 1 ft
= 0.305 m, and 1 yr = 365 days.

Problem 7. Modify the preceding problem to handle a two stage weightloss intervention: Sup-
pose for the first 16 weeks intake is reduced from 2143 to 1600 calories/day and physical ac-
tivity is increased from little to no exercise (PAL=1.4) to an hour of exercise 5 days per week
(PAL=1.7). The following 16 weeks intake is increased from 1600 to 2025 calories/day, and
exercise is limited to only 2-3 days per week (PAL=1.5).

You will need to recompute F0, and L0 at the end of the first 16 weeks, but K will stay
the same. Find and graph the solution curve over the 32 week period.
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