
1 Linear
Transformations

Lab Objective: Linear transformations are the most basic and essential operators in vector space
theory. In this lab we visually explore how linear transformations alter points in the Cartesian plane.
We also empirically explore the computational cost of applying linear transformations via matrix
multiplication.

Linear Transformations
A linear transformation is a mapping between vector spaces that preserves addition and scalar
multiplication. More precisely, let V and W be vector spaces over a common field F. A map
L : V →W is a linear transformation from V into W if

L(ax1 + bx2) = aLx1 + bLx2

for all vectors x1, x2 ∈ V and scalars a, b ∈ F.
Every linear transformation L from anm-dimensional vector space into an n-dimensional vector

space can be represented by an m× n matrix A, called the matrix representation of L. To apply L
to a vector x, left multiply by its matrix representation. This results in a new vector x′, where each
component is some linear combination of the elements of x. For linear transformations from R2 to
R2, this process has the form

Ax =

[
a b

c d

] [
x

y

]
=

[
ax+ by

cx+ dy

]
=

[
x′

y′

]
= x′.

Linear transformations can be interpreted geometrically. To demonstrate this, consider the
array of points H that collectively form a picture of a horse, stored in the file horse.npy. The
coordinate pairs xi are organized by column, so the array has two rows: one for x-coordinates, and
one for y-coordinates. Matrix multiplication on the left transforms each coordinate pair, resulting in
another matrix H ′ whose columns are the transformed coordinate pairs:

AH = A

[
x1 x2 x3 . . .

y1 y2 y3 . . .

]
= A

 x1 x2 x3 . . .

 =

 Ax1 Ax2 Ax3 . . .


=

 x′
1 x′

2 x′
3 . . .

 =

[
x′1 x′2 x′3 . . .

y′1 y′2 y′3 . . .

]
= H ′.

1

2 Lab 1. Linear Transformations

To begin, use np.load() to extract the array from the npy file, then plot the unaltered points
as individual pixels. See Figure 1.1 for the result.

>>> import numpy as np
>>> from matplotlib import pyplot as plt

Load the array from the .npy file.
>>> data = np.load("horse.npy")

Plot the x row against the y row with black pixels.
>>> plt.plot(data[0], data[1], 'k,')

Set the window limits to [-1, 1] by [-1, 1] and make the window square.
>>> plt.axis([-1,1,-1,1])
>>> plt.gca().set_aspect("equal")
>>> plt.show()

Types of Linear Transformations

Linear transformations from R2 into R2 can be classified in a few ways.

• Stretch: Stretches or compresses the vector along each axis. The matrix representation is
diagonal: [

a 0

0 b

]
.

If a = b, the transformation is called a dilation. The stretch in Figure 1.1 uses a = 1
2 and b = 6

5

to compress the x-axis and stretch the y-axis.

• Shear: Slants the vector by a scalar factor horizontally or vertically (or both simultaneously).
The matrix representation is [

1 a

b 1

]
.

Pure horizontal shears (b = 0) skew the x-coordinate of the vector while pure vertical shears
(a = 0) skew the y-coordinate. Figure 1.1 has a horizontal shear with a = 1

2 , b = 0.

• Reflection: Reflects the vector about a line that passes through the origin. The reflection
about the line spanned by the vector [a, b]T has the matrix representation

1

a2 + b2

[
a2 − b2 2ab

2ab b2 − a2
]
.

The reflection in Figure 1.1 reflects the image about the y-axis (a = 0, b = 1).

• Rotation: Rotates the vector around the origin. A counterclockwise rotation of θ radians has
the following matrix representation: [

cos θ − sin θ

sin θ cos θ

]
A negative value of θ performs a clockwise rotation. Choosing θ = π

2 produces the rotation in
Figure 1.1.

3

Original Stretch Shear

Reflection Rotation Composition
Figure 1.1: The points stored in horse.npy under various linear transformations.

Problem 1. Write a function for each type of linear transformation. Each function should
accept an array to transform and the scalars that define the transformation (a and b for stretch,
shear, and reflection, and θ for rotation). Construct the matrix representation, left multiply it
with the input array, and return the transformed array.

To test these functions, write a function to plot the original points in horse.npy together
with the transformed points in subplots for a side-by-side comparison. Compare your results
to Figure 1.1.

Compositions of Linear Transformations

Let V , W , and Z be finite-dimensional vector spaces. If L : V → W and K : W → Z are linear
transformations with matrix representations A and B, respectively, then the composition function
KL : V → Z is also a linear transformation, and its matrix representation is the matrix product BA.

For example, if S is a matrix representing a shear and R is a matrix representing a rotation,
then RS represents a shear followed by a rotation. In fact, any linear transformation L : R2 → R2

is a composition of the four transformations discussed above. Figure 1.1 displays the composition of
all four previous transformations, applied in order (stretch, shear, reflection, then rotation).

4 Lab 1. Linear Transformations

Affine Transformations
All linear transformations map the origin to itself. An affine transformation is a mapping between
vector spaces that preserves the relationships between points and lines, but that may not preserve
the origin. Every affine transformation T can be represented by a matrix A and a vector b. To apply
T to a vector x, calculate Ax+b. If b = 0 then the transformation is linear, and if A = I but b 6= 0

then it is called a translation.
For example, if T is the translation with b =

[
3
4 ,

1
2

]T, then applying T to an image will shift it
right by 3

4 and up by 1
2 . This translation is illustrated below.

Original Translation

Affine transformations include all compositions of stretches, shears, rotations, reflections, and
translations. For example, if S represents a shear and R a rotation, and if b is a vector, then RSx+b

shears, then rotates, then translates x.

Modeling Motion with Affine Transformations

Affine transformations can be used to model particle motion, such as a planet rotating around the
sun. Let the sun be the origin, the planet’s location at time t be given by the vector p(t), and suppose
the planet has angular velocity ω (a measure of how fast the planet goes around the sun). To find
the planet’s position at time t given the planet’s initial position p(0), rotate the vector p(0) around
the origin by tω radians. Thus if R(θ) is the matrix representation of the linear transformation that
rotates a vector around the origin by θ radians, then p(t) = R(tω)p(0).

Origin p(0)

p(t)

tω radians

5

Composing the rotation with a translation shifts the center of rotation away from the origin,
yielding more complicated motion.

Problem 2. The moon orbits the earth while the earth orbits the sun. Assuming circular
orbits, we can compute the trajectories of both the earth and the moon using only linear and
affine transformations.

Assume an orientation where both the earth and moon travel counterclockwise, with the
sun at the origin. Let pe(t) and pm(t) be the positions of the earth and the moon at time t,
respectively, and let ωe and ωm be each celestial body’s angular velocity. For a particular time
t, we calculate pe(t) and pm(t) with the following steps.

1. Compute pe(t) by rotating the initial vector pe(0) counterclockwise about the origin by
tωe radians.

2. Calculate the position of the moon relative to the earth at time t by rotating the vector
pm(0)− pe(0) counterclockwise about the origin by tωm radians.

3. To compute pm(t), translate the vector resulting from the previous step by pe(t).

Write a function that accepts a final time T , initial positions xe and xm, and the angular
momenta ωe and ωm. Assuming initial positions pe(0) = (xe, 0) and pm(0) = (xm, 0), plot
pe(t) and pm(t) over the time interval t ∈ [0, T].

Setting T = 3π
2 , xe = 10, xm = 11, ωe = 1, and ωm = 13, your plot should resemble

the following figure (fix the aspect ratio with ax.set_aspect("equal")). Note that a more
celestially accurate figure would use xe = 400, xm = 401 (the interested reader should see
http://www.math.nus.edu.sg/aslaksen/teaching/convex.html).

10 5 0 5 10

10

5

0

5

10

Earth
Moon

http://www.math.nus.edu.sg/aslaksen/teaching/convex.html

6 Lab 1. Linear Transformations

Timing Matrix Operations
Linear transformations are easy to perform via matrix multiplication. However, performing matrix
multiplication with very large matrices can strain a machine’s time and memory constraints. For
the remainder of this lab we take an empirical approach in exploring how much time and memory
different matrix operations require.

Timing Code

Recall that the time module’s time() function measures the number of seconds since the Epoch.
To measure how long it takes for code to run, record the time just before and just after the code in
question, then subtract the first measurement from the second to get the number of seconds that have
passed. Additionally, in IPython, the quick command %timeit uses the timeit module to quickly
time a single line of code.

In [1]: import time

In [2]: def for_loop():
...: """Go through ten million iterations of nothing."""
...: for _ in range(int(1e7)):
...: pass

In [3]: def time_for_loop():
...: """Time for_loop() with time.time()."""
...: start = time.time() # Clock the starting time.
...: for_loop()
...: return time.time() - start # Return the elapsed time.

In [4]: time_for_loop()
0.24458789825439453

In [5]: %timeit for_loop()
248 ms +- 5.35 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

Timing an Algorithm

Most algorithms have at least one input that dictates the size of the problem to be solved. For
example, the following functions take in a single integer n and produce a random vector of length n
as a list or a random n× n matrix as a list of lists.

from random import random
def random_vector(n): # Equivalent to np.random.random(n).tolist()

"""Generate a random vector of length n as a list."""
return [random() for i in range(n)]

def random_matrix(n): # Equivalent to np.random.random((n,n)).tolist()
"""Generate a random nxn matrix as a list of lists."""
return [[random() for j in range(n)] for i in range(n)]

7

Executing random_vector(n) calls random() n times, so doubling n should about double the
amount of time random_vector(n) takes to execute. By contrast, executing random_matrix(n) calls
random() n2 times (n times per row with n rows). Therefore doubling n will likely more than double
the amount of time random_matrix(n) takes to execute, especially if n is large.

To visualize this phenomenon, we time random_matrix() for n = 21, 22, . . . , 212 and plot n
against the execution time. The result is displayed below on the left.

>>> domain = 2**np.arange(1,13)
>>> times = []
>>> for n in domain:
... start = time.time()
... random_matrix(n)
... times.append(time.time() - start)
...
>>> plt.plot(domain, times, 'g.-', linewidth=2, markersize=15)
>>> plt.xlabel("n", fontsize=14)
>>> plt.ylabel("Seconds", fontsize=14)
>>> plt.show()

0 1000 2000 3000 4000
n

0.0

0.5

1.0

1.5

2.0

Se
co

nd
s

0 1000 2000 3000 4000
n

0.0

0.5

1.0

1.5

2.0

Se
co

nd
s

The figure on the left shows that the execution time for random_matrix(n) increases quadrat-
ically in n. In fact, the blue dotted line in the figure on the right is the parabola y = an2, which
fits nicely over the timed observations. Here a is a small constant, but it is much less significant
than the exponent on the n. To represent this algorithm’s growth, we ignore a altogether and write
random_matrix(n) ∼ n2.

Note

An algorithm like random_matrix(n) whose execution time increases quadratically with n is
called O(n2), notated by random_matrix(n) ∈ O(n2). Big-oh notation is common for indicating
both the temporal complexity of an algorithm (how the execution time grows with n) and the
spatial complexity (how the memory usage grows with n).

8 Lab 1. Linear Transformations

Problem 3. Let A be an m× n matrix with entries aij , x be an n× 1 vector with entries xk,
and B be an n× p matrix with entries bij . The matrix-vector product Ax = y is a new m× 1

vector and the matrix-matrix product AB = C is a new m× p matrix. The entries yi of y and
cij of C are determined by the following formulas:

yi =

n∑
k=1

aikxk cij =

n∑
k=1

aikbkj

These formulas are implemented below without using NumPy arrays or operations.

def matrix_vector_product(A, x): # Equivalent to np.dot(A,x).tolist()
"""Compute the matrix-vector product Ax as a list."""
m, n = len(A), len(x)
return [sum([A[i][k] * x[k] for k in range(n)]) for i in range(m)]

def matrix_matrix_product(A, B): # Equivalent to np.dot(A,B).tolist()
"""Compute the matrix-matrix product AB as a list of lists."""
m, n, p = len(A), len(B), len(B[0])
return [[sum([A[i][k] * B[k][j] for k in range(n)])

for j in range(p)]
for i in range(m)]

Time each of these functions with increasingly large inputs. Generate the inputs A, x,
and B with random_matrix() and random_vector() (so each input will be n × n or n × 1).
Only time the multiplication functions, not the generating functions.

Report your findings in a single figure with two subplots: one with matrix-vector times,
and one with matrix-matrix times. Choose a domain for n so that your figure accurately
describes the growth, but avoid values of n that lead to execution times of more than 1 minute.
Your figure should resemble the following plots.

0 50 100 150 200 250
n

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Se
co

nd
s

Matrix-Vector Multiplication

0 50 100 150 200 250
n

0.0

0.5

1.0

1.5

2.0

2.5

Se
co

nd
s

Matrix-Matrix Multiplication

9

Logarithmic Plots

Though the two plots from Problem 3 look similar, the scales on the y-axes show that the actual
execution times differ greatly. To be compared correctly, the results need to be viewed differently.

A logarithmic plot uses a logarithmic scale—with values that increase exponentially, such as
101, 102, 103, . . .—on one or both of its axes. The three kinds of log plots are listed below.

• log-lin: the x-axis uses a logarithmic scale but the y-axis uses a linear scale.
Use plt.semilogx() instead of plt.plot().

• lin-log: the x-axis is uses a linear scale but the y-axis uses a log scale.
Use plt.semilogy() instead of plt.plot().

• log-log: both the x and y-axis use a logarithmic scale.
Use plt.loglog() instead of plt.plot().

Since the domain n = 21, 22, . . . is a logarithmic scale and the execution times increase
quadratically, we visualize the results of the previous problem with a log-log plot. The default base
for the logarithmic scales on logarithmic plots in Matplotlib is 10. To change the base to 2 on each
axis, specify the keyword arguments basex=2 and basey=2.

Suppose the domain of n values are stored in domain and the corresponding execution times
for matrix_vector_product() and matrix_matrix_product() are stored in vector_times and
matrix_times, respectively. Then the following code produces Figure 1.5.

>>> ax1 = plt.subplot(121) # Plot both curves on a regular lin-lin plot.
>>> ax1.plot(domain, vector_times, 'b.-', lw=2, ms=15, label="Matrix-Vector")
>>> ax1.plot(domain, matrix_times, 'g.-', lw=2, ms=15, label="Matrix-Matrix")
>>> ax1.legend(loc="upper left")

>>> ax2 = plot.subplot(122) # Plot both curves on a base 2 log-log plot.
>>> ax2.loglog(domain, vector_times, 'b.-', basex=2, basey=2, lw=2)
>>> ax2.loglog(domain, matrix_times, 'g.-', basex=2, basey=2, lw=2)

>>> plt.show()

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5 Matrix-Vector
Matrix-Matrix

21 22 23 24 25 26 27 28

2 16

2 13

2 10

2 7

2 4

2 1

22

Figure 1.5

10 Lab 1. Linear Transformations

In the log-log plot, the slope of the matrix_matrix_product() line is about 3 and the slope of
the matrix_vector_product() line is about 2. This reflects the fact that matrix-matrix multipli-
cation (which uses 3 loops) is O(n3), while matrix-vector multiplication (which only has 2 loops) is
only O(n2).

Problem 4. NumPy is built specifically for fast numerical computations. Repeat the experi-
ment of Problem 3, timing the following operations:

• matrix-vector multiplication with matrix_vector_product().

• matrix-matrix multiplication with matrix_matrix_product().

• matrix-vector multiplication with np.dot() or @.

• matrix-matrix multiplication with np.dot() or @.

Create a single figure with two subplots: one with all four sets of execution times on a
regular linear scale, and one with all four sets of execution times on a log-log scale. Compare
your results to Figure 1.5.

Note

Problem 4 shows that matrix operations are significantly faster in NumPy than in
plain Python. Matrix-matrix multiplication grows cubically regardless of the implementation;
however, with lists the times grows at a rate of an3 while with NumPy the times grow at a rate
of bn3, where a is much larger than b. NumPy is more efficient for several reasons:

1. Iterating through loops is very expensive. Many of NumPy’s operations are implemented
in C, which are much faster than Python loops.

2. Arrays are designed specifically for matrix operations, while Python lists are general
purpose.

3. NumPy carefully takes advantage of computer hardware, efficiently using different levels
of computer memory.

However, in Problem 4, the execution times for matrix multiplication with NumPy seem
to increase somewhat inconsistently. This is because the fastest layer of computer memory can
only handle so much information before the computer has to begin using a larger, slower layer
of memory.

11

Additional Material
Image Transformation as a Class

Consider organizing the functions from Problem 1 into a class. The constructor might accept an
array or the name of a file containing an array. This structure would makes it easy to do several
linear or affine transformations in sequence.

>>> horse = ImageTransformer("horse.npy")
>>> horse.stretch(.5, 1.2)
>>> horse.shear(.5, 0)
>>> horse.relect(0, 1)
>>> horse.rotate(np.pi/2.)
>>> horse.translate(.75, .5)
>>> horse.display()

Animating Parametrizations

The plot in Problem 2 fails to fully convey the system’s evolution over time because time itself is not
part of the plot. The following function creates an animation for the earth and moon trajectories.

from matplotlib.animation import FuncAnimation

def solar_system_animation(earth, moon):
"""Animate the moon orbiting the earth and the earth orbiting the sun.
Parameters:

earth ((2,N) ndarray): The earth's postion with x-coordinates on the
first row and y coordinates on the second row.

moon ((2,N) ndarray): The moon's postion with x-coordinates on the
first row and y coordinates on the second row.

"""
fig, ax = plt.subplots(1,1) # Make a figure explicitly.
plt.axis([-15,15,-15,15]) # Set the window limits.
ax.set_aspect("equal") # Make the window square.
earth_dot, = ax.plot([],[], 'C0o', ms=10) # Blue dot for the earth.
earth_path, = ax.plot([],[], 'C0-') # Blue line for the earth.
moon_dot, = ax.plot([],[], 'C2o', ms=5) # Green dot for the moon.
moon_path, = ax.plot([],[], 'C2-') # Green line for the moon.
ax.plot([0],[0],'y*', ms=20) # Yellow star for the sun.

def animate(index):
earth_dot.set_data(earth[0,index], earth[1,index])
earth_path.set_data(earth[0,:index], earth[1,:index])
moon_dot.set_data(moon[0,index], moon[1,index])
moon_path.set_data(moon[0,:index], moon[1,:index])
return earth_dot, earth_path, moon_dot, moon_path,

a = FuncAnimation(fig, animate, frames=earth.shape[1], interval=25)
plt.show()

	Linear Transformations

