
1 K-Means Clustering

Lab Objective: Clustering is the one of the main tools in unsupervised learning—machine learning
problems where the data comes without labels. In this lab we implement the k-means algorithm, a
simple and popular clustering method, and apply it to geographic clustering and color quantization.

Jupyter Notebooks
Unlike previous labs where the python file submitted was a normal .py file, this lab among others will
be done in a Jupyter Notebook (.ipynb or an iPython Notebook). Jupyter Notebooks is a powerful
tool in visualizing data. If you have used Google Colab, this works in a similar manner but it is run
on your personal machine.

Once Jupyter Notebook is installed, there are several ways of starting a Jupyter Notebook. The
easiest way is to open a new terminal window and navigate to the directory with your .ipynb file,
once in the desired directory, type Jupyter notebook. This should automatically open a web browser
to the Jupyter Notebook dashboard, from there you can select the .ipynb file and open and edit it.

The Python kernel will keep running in the background until told to stop. So when you are
done, to close the Jupyter Notebook, you need to go to file-> Close and Halt, or in the terminal
window press ctrl+c (cmd+c for Mac).

Achtung!

Before you push this file to Bitbucket to be graded, be sure to run each cell. When you push a
.ipynb file, the current state of the file is pushed. This means what you see is exactly what the
graders will see.

Clustering
In this lab, we will analyze a few different datasets from Scikit-Learn’s library and use the K-means
algorithm. Figure 1.1 is a graph of the iris dataset. As a human, it is easy to identify the two distinct
groups of data. Can we create an algorithm to identify these groups without human supervision?
This task is called clustering, an instance of unsupervised learning. The K-means algorithm is a
simple way of helping computers see the group distinctions.

1

2 Lab 1. K-Means Clustering

Figure 1.1: The first two principal components of the iris dataset.

The objective of clustering is to find a partitions of the data such that points in the same subset
will be “close” according to some metric. The metric used will likely depend on the data, but some
obvious choices include Euclidean distance and angular distance. Throughout this lab, we will use
the metric d(x, y) = ‖x− y‖2, the Euclidean distance between x and y, unless we specify a different
metric to be used.

More formally, suppose we have a collection of RK-valued observations X = {x1, x2, . . . , xn}.
Let N ∈ N and let S be the set of all N -partitions of X, where an N -partition is a partition with
exactly N nonempty elements. We can represent a typical partition in S as S = {S1, S2, . . . , SN},
where

X =

N⋃
i=1

Si

and
|Si| > 0, i = 1, 2, . . . , N.

We seek the N -partition S∗ that minimizes the within-cluster sum of squares, i.e.

S∗ = argmin
S∈S

N∑
i=1

∑
xj∈Si

‖xj − µi‖22,

where µi is the mean of the elements in Si, i.e.

µi =
1

|Si|
∑

xj∈Si

xj .

The K-Means Algorithm

Finding the global minimizing partition S∗ is generally intractable since the set of partitions can be
very large indeed, but the k-means algorithm is a heuristic approach that can often provide reasonably

3

accurate results.
We begin by specifying an initial cluster mean µ

(1)
i for each i = 1, · · · , N . This can be done

by random initialization, or according to some heuristic. For each iteration, we adopt the following
procedure. Given a current set of cluster means µ(t), we find a partition S(t) of the observations such
that

S
(t)
i = {xj : ‖xj − µ(t)

i ‖
2
2 ≤ ‖xj − µ

(t)
l ‖

2
2, l = 1, · · · , N}.

We then update our cluster means by computing for each i = 1, · · · , N . We continue to iterate in
this manner until the partition ceases to change.

Figure 1.2 shows two different clusterings of the iris data produced by the k-means algorithm.
Note that the quality of the clustering can depend heavily on the initial cluster means. We can use
the within-cluster sum of squares as a measure of the quality of a clustering (a lower sum of squares
is better). Where possible, it is advisable to run the clustering algorithm several times, each with
a different initialization of the means, and keep the best clustering. Note also that it is possible to
have very slow convergence. Thus, when implementing the algorithm, it is a good idea to terminate
after some specified maximum number of iterations.

Figure 1.2: Two different K-Means clusterings for the iris dataset. Notice that the clustering on the
left predicts the flower species to a high degree of accuracy, while the clustering on the right is less
effective.

The algorithm can be summarized as follows.

1. From the data points, choose k initial cluster centers.

2. For i = 0, . . . , max_iter,

(a) Assign each data point to the cluster center that is closest, forming k clusters.

(b) Recompute the cluster centers as the means of the new clusters.

(c) If the old cluster centers and the new cluster centers are sufficiently close, terminate early.

Problem 1. Write a KMeans class for doing basic k-means clustering. Implement the following
methods, following sklearn class conventions.

4 Lab 1. K-Means Clustering

1. __init__(): Accept a number of clusters k, a maximum number of iterations, and a
convergence tolerance. Store these as attributes.

2. fit(): Accept an m × n matrix X of m data points with n features. Choose k random
rows of X as the initial cluster centers. Run the k-means iteration until consecutive
centers are within the convergence tolerance, or until iterating the maximum number of
times. Save the cluster centers as attributes.

If a cluster is empty, reassign the cluster center as a random row of X.

3. predict(): Accept an l × n matrix X of data. Return an array of l integers where the
ith entry indicates which cluster center the ith row of X is closest to.

Test your class on the iris data set after reducing the data to two principal components. Plot
the data, coloring by cluster.

Fire Station Placement

When urban planners are making plans for a city, there are many city elements to consider. One of
which is the locations of the fire stations that will service the city. When choosing a suitable location
for the city, urban planners look at the current building locations, the roads nearby each location,
prior traffic history and the areas of potential growth. We will simplify this complex problem by
only taking into account the distances from each building to the nearest fire station (see Additional
Material for a harder version of this problem).

Using another data set from SKLearn, we can get the data from the 1990 US Census for
California housing based on the blocks of the residents. This has been saved in sacramento.npy and
can be accessed by using the np.load() function. This file contains demographic data for each block in
Sacramento and nearby cities. The eight columns in the file are: median block income, median house
age in the block, average number of rooms, average number of bedrooms, average house occupancy,
latitude and longitude.

There are couple ways for a fire station to be optimally placed. The stations could be placed
to minimize the average distance to each house. Another option is to minimize the distance to the
farthest house in each group. For this problem, minimize the distance to the farthest house in each
group.

Problem 2. Using the Methods you wrote in Problem 1, add a parameter, p, to your class
that denotes the norm and defaults to 2. Save p as an attribute to be used in your fit() and
predict() functions. Using the data in sacramento.npy find the optimal placement for the fire
stations. Plot the longitude and latitudes, the centers, and color them by cluster. Try different
values for p to find the optimal locations for the fire stations. As the initial centers are chosen
at random, make sure to run the predict() function several times. In a Markdown cell report
which norm was the best at keeping the maximum distance small.

5

Figure 1.3: Sacramento Housing Data (1990 US Census).

Detecting Active Earthquake Regions
Suppose we are interested in learning about which regions are prone to experience frequent earthquake
activity. We could make a map of all earthquakes over a given period of time and examine it ourselves,
but this, as an unsupervised learning problem, can be solved using our k-means clustering tool.

Figure 1.4: Earthquake epicenters over a 6 month period.

6 Lab 1. K-Means Clustering

The file earthquake_coordinates.npy contains earthquake data throughout the world from
January 2010 through June 2010. Each row represents a different earthquake; the columns are scaled
longitude and latitude measurements. We want to cluster this data into active earthquake regions.
For this task, we might think that we can regard any epicenter as a point in R2 with coordinates
being their latitude and longitude. This, however, would be incorrect, because the earth is not flat.
Instead, latitude and longitude should be viewed in spherical coordinates in R3, which could then be
clustered.

A simple way to accomplish this transformation is to first transform the latitude and longitude
values to spherical coordinates, and then to Euclidean coordinates. Recall that a spherical coordinate
in R3 is a triple (r, θ, ϕ), where r is the distance from the origin, θ is the radial angle in the xy-plane
from the x-axis, and ϕ is the angle from the z-axis. In our earthquake data, once the longitude is
converted to radians it is an appropriate θ value; the latitude needs to be offset by 90◦ degrees, then
converted to radians to obtain ϕ. For simplicity, we can take r = 1, since the earth is roughly a
sphere. We can then transform to Euclidean coordinates using the following relationships.

θ =
π

180
(longitude) ϕ =

π

180
(90− latitude)

r =
√
x2 + y2 + z2 x = r sinϕ cos θ

ϕ = arccos
z

r
y = r sinϕ sin θ

θ = arctan
y

x
z = r cosϕ

There is one last issue to solve before clustering. Each earthquake data point has norm 1 in
Euclidean coordinates, since it lies on the surface of a sphere of radius 1. Therefore, the cluster
centers should also have norm 1. Otherwise, the means can’t be interpreted as locations on the
surface of the earth, and the k-means algorithm will struggle to find good clusters. A solution to this
problem is to normalize the mean vectors at each iteration, so that they are always unit vectors.

Problem 3. Add a keyword argument normalize=False to your KMeans constructor. Modify
fit() so that if normalize is True, the cluster centers are normalized at each iteration.

Cluster the earthquake data in three dimensions by converting the data from raw data to
spherical coordinates to euclidean coordinates on the sphere.

1. Convert longitude and latitude to radians, then to spherical coordinates.
(Hint: np.deg2rad() may be helpful.)

2. Convert the spherical coordinates to euclidean coordinates in R3.

3. Use your KMeans class with normalization to cluster the euclidean coordinates.

4. Translate the cluster center coordinates back to spherical coordinates, then to degrees.
Transform the cluster means back to latitude and longitude coordinates.
(Hint: use numpy.arctan2() for arctan, so that that correct quadrant is chosen).

5. Plot the data, coloring by cluster. Also mark the cluster centers.

With 15 clusters, your plot should resemble the Figure 1.5.

7

Figure 1.5: Earthquake epicenter clusters with k = 15.

Color Quantization
The k-means algorithm uses the euclidean metric, so it is natural to cluster geographic data. However,
clustering can be done in any abstract vector space. The following application is one example.

Images are usually represented on computers as 3-dimensional arrays. Each 2-dimensional layer
represents the red, green, and blue color values, so each pixel on the image is really a vector in R3.
Clustering the pixels in RGB space leads a one kind of image segmentation that facilitate memory
reduction.

Reading: https://en.wikipedia.org/wiki/Color_quantization

Problem 4. Write a function that accepts an image array (of shape (m,n, 3)), an integer
number of clusters k, and an integer number of samples S. Reshape the image so that each
row represents a single pixel. Choose S pixels to train a k-means model on with k clusters.
Make a copy of the original picture where each pixel has the same color as its cluster center.
Return the new image. For this problem, you may use sklearn.cluster.KMeans instead of
your KMeans class from Problem 1.

Test your function on some of the provided NASA images.

https://en.wikipedia.org/wiki/Color_quantization

8 Lab 1. K-Means Clustering

Additional Material
Spectral Clustering

We now turn to another method for solving a clustering problem, namely that of Spectral Clustering.
As you can see in Figure ???, it can cluster data not just by its location on a graph, but can even
separate shapes that overlap others into distinct clusters. It does so by utilizing the spectral properties
of a Laplacian matrix. Different types of Laplacian matrices can be used. In order to construct a
Laplacian matrix, we first need to create a graph of vertices and edges from our data points. This
graph can be represented as a symmetric matrix W where wij represents the edge from xi to xj . In
the simplest approach, we can set wij = 1 if there exists an edge and wij = 0 otherwise. However, we
are interested in the similarity of points, so we will weight the edges by using a similarity measure.
Points that are similar to one another are assigned a high similarity measure value, and dissimilar
points a low value. One possible measure is the Gaussian similarity function, which defines the
similarity between distinct points xi and xj as

s(xi, xj) = e−
‖xi−xj‖

2

2σ2

for some set value σ.
Note that some similarity functions can yield extremely small values for dissimilar points. We

have several options for dealing with this possibility. One is simply to set all values which are less
than some ε to be zero, entirely erasing the edge between these two points. Another option is to
keep only the T largest-valued edges for each vertex. Whichever method we choose to use, we will
end up with a weighted similarity matrix W . Using this we can find the diagonal degree matrix D,
which gives the number of edges found at each vertex. If we have the original fully-connected graph,
then Dii = n− 1 for each i. If we keep the T highest-valued edges, Dii = T for each i.

As mentioned before, we may use different types of Laplacian matrices. Three such possibilities
are:

1. The unnormalized Laplacian, L = D −W

2. The symmetric normalized Laplacian, Lsym = I −D−1/2WD−1/2

3. The random walk normalized Laplacian, Lrw = I −D−1W .

Given a similarity measure, which type of Laplacian to use, and the desired number of clusters
k, we can now proceed with the Spectral Clustering algorithm as follows:

• Compute W , D, and the appropriate Laplacian matrix.

• Compute the first k eigenvectors u1, · · · , uk of the Laplacian matrix.

• Set U = [u1, · · · , uk], and if using Lsym or Lrw normalize U so that each row is a unit vector
in the Euclidean norm.

• Perform k-means clustering on the n rows of U .

• The n labels returned from your kmeans function correspond to the label assignments for
x1, · · · , xn.

As before, we need to run through our k-means function multiple times to find the best measure
when we use random initialization. Also, if you normalize the rows of U , then you will need to set
the argument normalize = True.

9

Problem 5. Implement the Spectral Clustering Algorithm by calling your kmeans function,
using the following function declaration:

def specClus(measure,Laplacian,args,arg1=None,kiters=10):
"""
Cluster a dataset using the k-means algorithm.

Parameters

measure : function

The function used to calculate the similarity measure.
Laplacian : int in {1,2,3}

Which Laplacian matrix to use. 1 corresponds to the unnormalized,
2 to the symmetric normalized, 3 to the random walk normalized.

args : tuple
The arguments as they were passed into your k-means function,
consisting of (data, n_clusters, init, max_iter, normalize). Note
that you will not pass 'data' into your k-means function.

arg1 : None, float, or int
If Laplacian==1, it should remain as None
If Laplacian==2, the cut-off value, epsilon.
If Laplacian==3, the number of edges to retain, T.

kiters : int
How many times to call your kmeans function to get the best
measure.

Returns

labels : ndarray of shape (n,)

The i-th entry is an integer in [0,n_clusters-1] indicating
which cluster the i-th row of data belongs to.

"""
pass

We now need a way to test our code. The website http://cs.joensuu.fi/sipu/datasets/ contains
many free data sets that will be of use to us. Scroll down to the “Shape sets" heading, and download
some of the datasets found there to use for trial datasets.

Problem 6. Create a function that will return the accuracy of your spectral clustering imple-
mentation, as follows:

def test_specClus(location,measure,Laplacian,args,arg1=None,kiters=10):
"""
Cluster a dataset using the k-means algorithm.

10 Lab 1. K-Means Clustering

Parameters

location : string

The location of the dataset to be tested.
measure : function

The function used to calculate the similarity measure.
Laplacian : int in {1,2,3}

Which Laplacian matrix to use. 1 corresponds to the unnormalized,
2 to the symmetric normalized, 3 to the random walk normalized.

args : tuple
The arguments as they were passed into your k-means function,
consisting of (data, n_clusters, init, max_iter, normalize). Note
that you will not pass 'data' into your k-means function.

arg1 : None, float, or int
If Laplacian==1, it should remain as None
If Laplacian==2, the cut-off value, epsilon.
If Laplacian==3, the number of edges to retain, T.

kiters : int
How many times to call your kmeans function to get the best
measure.

Returns

accuracy : float

The percent of labels correctly predicted by your spectral
clustering function with the given arguments (the number
correctly predicted divided by the total number of points.

"""
pass

Fire Station Placement II

In problem 2 we looked at choosing the best location for a fire station. However, because we looked
at the city of Sacramento where the geography doesn’t role in choosing a location, we didn’t need to
double check that there is a place for the station. The sanfrancisco.npy data is organized the same
way as sacramento.py, as this also comes from the SKLearn California Housing Module. Doing
the same method as before will give us groups of houses, however, the group centers may be in the
middle of the bay. When implementing this problem, perform a check on the centers to make sure
they are not in water. The file bayboundary.npy gives a rough outline of where the bay is. The
bayboundary.npy has only 2 columns, longitude and latitude. Using the boundaries set, make sure
that the chosen centers are on land and not on water.

Problem 7. Import and parse the data from the bayboundary.npy and the sanfrancisco.
npy files. Using either the algorithm that you wrote in problem 1 or the k-means algorithm in
the SK Learn library, find the optimal locations for the 16 fire stations.

11

After the algorithm has finished running, check to see if the new coordinates are on land.
Return the graph of the clusters, the centers (the fire station locations) as different colors.

	K-Means Clustering

