The Finite Difference
Method

Lab Objective: The finite difference method provides a solid foundation for solving partial dif-
ferential equations. Understanding and applying finite difference is key to understanding numerical
solutions to PDEFEs.

A finite difference for a function f(z) is an expression of the form f(z + s)— f(x +1¢). Finite
differences can give a good approximation of derivatives.

Suppose we have a function u(x), defined on an interval [a,b]. Let a = g, 21,...Tp—1,Zn = b
be a grid of n + 1 evenly spaced points, with z;1 — x; = h, where h = (b — a)/n.

You are used to seeing the derivative u'(x), which can written in centered-difference form as:

iy o u(m+h) —ulz —h)
wle) = o -

Suppose we are interested in knowing the value of the derivative at the points {x;}. Even if we don’t
have a formula for u'(x), we can approximate it using finite differences. We first write the Taylor
polynomial expansion of u(xz 4+ h) and u(x — h) centered at x. This gives

u(z 4+ h) = u(z) +u'(z)h + %u"(nc)h2 + éu’”(as)h3 +O(h*) (1.1)
u(x —h) = u(z) —u'(z)h + %u”(x)h2 - éu’”(m)h?’ +O(h*) (1.2)

Subtracting (1.2) from (1.1) and rearranging gives

1oy W+ h) —ulz—h) 2
u'(z) = 5T + O(h?).

In terms of our grid points {z;}, we have:

o (35) (@i +h) —u(w; —h) _ uwitr) = u(@i)
Z 2h 2h '

We won’t worry about the derivative at the endpoints, u/(z¢) and (). This allows us to approx-
imate the values {u/(x;)} as the solution to a system of equations:

.
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-1 0 1 u(zo) u' (1)
-1 1 u(xy) u'(x2)
1 ) . . : ~ : (1.3)
2h -1 0 1 u(Tp_1) U (Tp—2)

-1 0 1 u(zy) ' (Tp—1)
(n—1)x(n+1) (n+1)x1 (n—1)x1

This can be rewritten with a (n — 1) x (n — 1) tridiagonal matrix instead:

0 1 u(zy) —u(zg)/(2h) u'(z1)
-1 0 1 u(xs) 0 u'(z2)
1 : : :
- . . . . . + . ~ . (1.4)
2h 1 0 1 u(@n—2) 0 U (Tn—2)
-1 0 u(Tn_1) u(zn)/(2h) w(xp—1)
(n—=1)x(n—1) (n—1)x1 (n—1)x1 (n—1)x1

Next, we will consider the approximation for u”(z). If we let

u(z+4) —u(z—14)

/ ~
u'(z) =~ W
then
w((z+ )+ 2y —u((z+ 1)L w((z—2)+2)—u((z—L2)—2
u,/(x) - ul(m_’_%)_u/(x_%) - (( +2)+2)h (( +2) 2) _ (( 2)+2)h (( 2) 2)
h h
~u(z +h) = 2u(x) +u(z — h)
= 2

You can achieve the same result by again consider the Taylor polynomial expansion and adding (1.1)
and (1.2) and rearranging. Thus

W (2;) ~ u(z; + h) —2u(x;) + u(z; — h) _ w(wizr) — 2u(x;) + u(w;_1)
' h? 12

Again ignoring the second derivative at the endpoints, this can be written in matrix form as

1 -2 1 u(zg) uw”’(z1)
1 -2 1 u(zy) u"(x2)
1 : :
1 S . . ~ : (1.5)
h? 1 -2 1 w(Tp—_1) w(Tp—2)
1 -2 1 u(zy,) u’(zp—1)
(n—1)x(n+1) (n+1)x1 (n—1)x1
This can also be written with a (n — 1) x (n — 1) tridiagonal matrix:
-2 1 u(zy) u(zo)/h? u”(z1)
1 -2 1 u(ws) 0 u’(z2)
1 : :
1 : : . . : + : - : (1.6)
h? 1 -2 1 u(zp_2) 0 U’ (Tp—2)
1 -2 u(xp—1) u(xy,)/h? u’(xp—1)

(n—1)x(n—1) (n—1)x1 (n—1)x1 (n—1)x1



Problem 1. Let u(z) = sin((z + )% — 1). Use (1.3) - (1.6) to approximate u” — v’ at the
grid points where a = 0, b = 1, and n = 10. Graph the result.

The previous equations are not only useful for approximating derivatives, but they can be also
used to solve differential equations. Suppose that instead of knowing the function u(x), we know
that 1u” — ' = f, where the function f(z) is given. How do we solve for u(z)?

Finite Difference Methods

Numerical methods for differential equations seek to approximate the exact solution u(x) at some
finite collection of points in the domain of the problem. Instead of analytically solving the original
differential equation, defined over an infinite-dimensional function space, they use a well-chosen finite
system of algebraic equations to approximate the original problem.

Consider the following differential equation:
(1.7)

Equation (1.7) can be written Du = f, where D = 5% — % is a differential operator defined on the

infinite-dimensional space of functions that are twice continuously differentiable on [0, 1] and satisfy
u(0) = a, u(l) = 6.

We look for an approximate solution {U;}, where

U = u(z;)
on an evenly spaced grid of points, a = xg, x1,...,x, = b,. Our finite difference method will replace
2
the differential operator D = Ej? — %7 (which is defined on an infinite-dimensional space), with

finite difference operators (defined on a finite dimensional space). To do this, we replace derivative
terms in the differential equation with appropriate difference expressions.

Recalling that

d? Cu(@ig) — 2u(z) +u(zi-1)

@U(ﬂ%) = - 12 +O(h?),
d o ’UJ(J?Z 1) — U(.’L’i_l) 2

J-ulri) = + o + O(h?).

we define the finite difference operator D, by

1 1
DU, = €ﬁ (Ui+1 —2U; + Ui—l) — % (Ui+1 — Ui—l) . (18)

Thus we discretize equation (1.7) using the equations

€ 1 .
ﬁ(Ui-‘rl —2U; +Ui—1) — o (Uit1 = Uim1) = f(z), i=1,...,n—1,

along with boundary conditions Uy = «, U,, = 8.
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This gives n + 1 equations and n + 1 unknowns, and can be written in matrix form as

h? 0 0 0 Uy e
(e4+h/2) —2¢ (¢—h/2) ... 0 Uy f(z1)
1 : : : _ :
h? 0 .. (e+h/2) =2 (e—h/2) Un—1 f(zn_1)
0 0 h? U, B
(n4+1)x(n+1) (n+1)x1 (n+1)x1

As before, we can remove two equations to modify the system to obtain an (n—1) x (n—1) tridiagonal
system:

—2¢ (e —h/2) 0 0 Uy

(e+h/2) —2¢ (e —h/2) 0 Us

1 : : . ;
h? 0 o (e4hj2) =2 (e—h/2) Up_s
0 (e+h/2)  —2¢ Up_1

(n—1)x(n—1) (n—1)x1 (19)
f(x1) — ale +h/2)/h°
f(x2)
f(as)

f@n-1) = B(e = h/2)/1?

(n—1)x1

Problem 2. Use equation (1.9) to solve the singularly perturbed BVP (1.7) on the interval
[0,1] with e = 1/10, f(z) = =1, @ =1, and 8 = 3 on a grid with n = 30 subintervals. Graph
the solution. This BVP is called singularly perturbed because of the location of the parameter
€. For ¢ = 0 the ODE has a drastically different character - it then becomes first order, and
can no longer support two boundary conditions.

A heuristic test for convergence

The finite differences used above are second order approximations of the first and second derivatives
of a function. It seems reasonable to expect that the numerical solution would converge at a rate of
about O(h?). How can we check that a numerical approximation is reasonable?

Suppose a finite difference method is O(h?) accurate. This means that the error E(h) ~ Ch?
for some constant C' as h — 0 (in other words, for & > 0 small enough).

So compute the approximation y; for each stepsize hg, hy > ho > ... > hy. ym should be
the most accurate approximation, and will be thought of as the true solution. Then the error of the
approximation for stepsize hg, k < m, is

E(hi) = max(|yx — ym|) = ChY,
log(E(hg)) = log(C) + plog(hg)-
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Figure 1.1: The solution to Problem 2. The solution gets steeper near x = 1 as € gets small.
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Figure 1.2: Demonstration of second order convergence for the finite difference approximation (1.8)
of the BVP given in (1.7) with ¢ = .5.

Thus on a log-log plot of E(h) vs. h, these values should be on a straight line with slope p when
h is small enough to start getting convergence. We should note that demonstrating second-order
convergence does NOT imply that the numerical approximation is converging to the correct solution.

Problem 3. Implement a function singular_bvp to compute the finite difference solution to
1.7. Using n =5 x 2°,5 x 21, ... |5 x 29 subintervals, compute 10 approximate solutions. Use
these to visualize the O(h?) convergence of the finite difference method from Problem 2 by
producing a loglog plot of error against subinterval count; this will be similar to Figure 1.2,
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except with e = 0.1.

To produce the plot, treat the approximation with n = 5 x 2° subintervals as the "true
solution", and measure the error for the other approximations against it. Note that, since the
ratios of numbers of subintervals between approximations are multiples of 2, we can compute
the Lo, error for the n = 5 x 27 approximation by using the step argument in the array slicing
syntax:

# best approximation; the vector has length 5%279+1
sol_best = singular_bvp(eps,alpha,beta,f,5*(2**9))

# approximation with 5*%(27j) intervals; the vector has length 5*27j+1
sol_approx = singular_bvp(eps,alpha,beta,f,b5*(2*xj))

# approximation error; slicing results in a vector of length 5*27j+1,
# which allows it to be compared
error = np.max(np.abs(sol_approx - sol_best[::2%x(9-3)]1))

Problem 4. Extend your finite difference code to the case of a general second order linear
BVP with boundary conditions:

a1 ()y"(z) + az(2)y (z) + as(2)y(z) = f(z), x € (a,b),

1
y(a) =a, y(b) =p.
Use your code to solve the boundary value problem

ey” — 4(m — 2°)y = cosz,
y(0) =0, y(r/2)=1,

for e = 0.1 on a grid with n = 30 subintervals. Be sure to modify the finite difference operator
Dy, in (1.8) correctly.

The next few problems will help you test your finite difference code.

Problem 5. Numerically solve the boundary value problem

ey’ (x) + zy'(x) = —en® cos(nz) — mxsin(nx),
y(=1) =-2, y(1) =0,

for ¢ = 0.1,0.01, and 0.001. Use a grid with n = 150 subintervals. Plot your solutions.
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Figure 1.3: The solution to Problem 4.

Problem 6. Numerically solve the boundary value problem

(e + 22)y" (x) + 4y’ () + 2y(x) = 0,
y(=1)=1/(1+¢), y(1)=1/1+e¢),

for e = 0.05,0.02. Use a grid with n = 150 subintervals. Plot your solutions.
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Figure 1.4: The solution to Problem 5.
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Figure 1.5: The solution to Problem 6.
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