
1 Introduction to
Matplotlib: 3D Plotting
and Animations

Lab Objective: 3D plots and animations are useful in visualizing solutions to ODEs and PDEs
found in many dynamics and control problems. In this lab we explore the functionality contained in
the 3D plotting and animation libraries in Matplotlib.

Introduction
Matplotlib is a Python library that contains tools for creating plots in multiple dimensions. The
library contains important classes that are needed to create plots. The most important objects to
understand in this lab are figure objects, axes objects, and line objects. These three objects are
created using the following code.

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure() # Create figure object.
>>> ax = fig.add_subplot(111) # Create axes object.
>>> line2d, = plt.plot([],[]) # Create empty 2D Line object
>>> line3d, = plt.plot([],[],[]) # Create empty 3D line object

Recall that plt.figure() creates a matplotlib.figure.Figure object, which is the window
that is displayed when plt.show() is called. 3D plotting and animation both require explicitly
defining the Figure object, as shown above. This allows for the object to be updated and modified,
as will be explained later in the lab.

Figure objects contain matplotlib.axes._subplots.AxesSubplot objects, called axes. Axes
are spaces to plot on, and are created by the add_subplot() method of a Figure object. Figures
can have multiple axes.

Calling plt.plot() returns a list of line objects. For example, supposing x1, y1, x2, and y2 are
arrays containing data for two separate curves, then calling plt.plot(x1, y1, x2, y2) will return
a list with two elements. Each element of the list is a matplotlib.lines.Line2D object. If the axes
is three-dimensional, then the returned list will contain matplotlib.lines.Line3D objects. Because
this function call returns a list, if only one line is plotted, adding a trailing comma to the variable
name will assign the name to the first element of the returned list. You can alternatively reference
the zero index of the returned list, but using a trailing comma is standard.

1

2 Lab 1. Introduction to Matplotlib: 3D Plotting and Animations

Animation Background
The animation library in Matplotlib contains a class called FuncAnimation. We will use this class
throughout this lab. FuncAnimation requires a user-defined update function that controls the plot
for each frame of the animation. This grants the user wide flexibility and control of the resulting
animation. The following steps describe the process of creating a simple animated plot using the
FuncAnimation class.

1. Compute all data to be plotted.

2. Explicitly define figure object.

3. Define line objects to be altered dynamically.

4. Create function to update line objects.

5. Create FuncAnimation object.

6. Display using plt.show().

These steps will be explained by way of an example. The arrays x and y contain data giving the
location of a particle moving in the plane. To visualize this motion, one could animate the particle as
well as display the trajectory that the particle has traveled. For this animation, two separate Line2D
objects must be created on an axes object. The first, particle will be for the position of the particle
itself, and the second, traj will be for the trajectory that the particle has traveled. Note that these
objects are created with empty lists of data. The update function will be used to dynamically set
the data to be plotted in these line objects.

>>> import matplotlib.animation as animation
>>> import numpy as np
>>> t = np.linspace(0,2*np.pi,100)
>>> x = np.sin(t)
>>> y = t**2
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.set_xlim((-1.1,1.1))
>>> ax.set_ylim((0,40))
>>> particle, = plt.plot([],[], marker='o', color='r')
>>> traj, = plt.plot([],[], color='r', alpha=0.5)

The update function must be defined a specific way in order to interact properly with the
matplotlib.animation.FuncAnimation object. The update function must accept the current frame
index as its first input parameter and it must return a list or tuple of line objects. The current frame
index is used to access the data to be plotted in the current frame. Both 2D and 3D line objects have
the built-in method .set_data(). This function takes in two one-dimensional arrays representing x
and y values to plot. This allows a single line object to display different data for each frame. Inside
the update function, .set_data() is called on the line objects with the relevant data as inputs.

>>> def update(i):
>>> particle.set_data(x[i],y[i])
>>> traj.set_data(x[:i+1],y[:i+1])
>>> return particle,traj

3

Next, the FuncAnimation object is created. The argument frames specifies the iterable repre-
senting the frame indices. If frames is an integer, it is treated as the iterable range(frames). After
the FuncAnimation object is created, plt.show() displays the animation.

>>> ani = FuncAnimation(fig, update, frames=range(100), interval=25)
>>> plt.show()

The following table shows more parameters that can be passed into FuncAnimation.

Parameter Description
fargs (tuple) Additional arguements to pass update function

interval (float) Delay between frames in milliseconds
repeat (bool) Determines whether animation repeats (Default True)

blit (bool) Determines whether blitting is used (Default False)

Note

When using FuncAnimation, it is essential that a reference is kept to the instance of the class.
The animation is advanced by a timer and if a reference is not held for the object, Python will
automatically garbage collect and the animation will stop.

Embedding Animations

Some systems may struggle with using plt.show() to display an animation. In this case, it may be
easier to embed the animation using the HTML5 API. Jupyter notebooks use HTML to display their
contents, so we can leverage this and use HTML5’s video capabilities to insert video directly into a
notebook.

To embed the video directly into a notebook using HTML5 you must use the IPython.display
module. This module will be able to interpret an encoded HTML5 video, which matplotlib.
animation can create. This method tends to be much more simple than rendering the animation to
an .mp4 file and then embedding that file into a notebook, as it does not require an outside encoder,
and it tends to be encounter fewer bugs than using plt.show(). Here is a snippet you may reference
to embed an animation using IPyton.display

required import statements
from IPython.display import HTML
import matplotlib.pyplot as plt
from matplotlib import animation

disable interactive mode
plt.ioff()
'''
Here we would insert whatever code needed to create the animation
such as instantiating the fig object and defining the update function
'''
create animation
ani = animation.FuncAnimation(fig, update, frames=N, interval=i)

4 Lab 1. Introduction to Matplotlib: 3D Plotting and Animations

render as html5 and embed
HTML(ani.to_html5_video())

Problem 1. Use the FuncAnimation class to animate the function y = sin(x + 0.1t) where
x ∈ [0, 2π], and t ranges from 0 to 100 seconds.

3D Plotting Introduction

3D plotting is very similar to 2D plotting. The main difference is that a set of 3D axes must be
created within the figure object. A 3D axes object is created using the additional keyword argument
projection='3d', as shown below. Note that the Axes3D submodule must first be imported in
order to create the 3D axis.

>>> from mpl_toolkits.mplot3d import Axes3D
>>>
>>> # Create figure object.
>>> fig = plt.figure()
>>>
>>> # Create 3D axis object using add_subplot().
>>> ax = fig.add_subplot(111, projection='3d')

3D Static Plotting

When the axes object is explicitly defined, plots are generated by calling the chosen plot function
(such as ax.plot() on the axes object. Additional information on the use of axes objects can be
found here: https://matplotlib.org/api/axes_api.html.

Problem 2. The orbits for Mercury, Venus, Earth, and Mars are stored in the file orbits.npz.
The file contains four NumPy arrays: mercury, venus, earth, and mars. The first column of
each array contains the x-coordinates, the second column contains the y-coordinates, and the
third column contians the z-coordinates of each planet, all relative to the Sun, and expressed in
AU (astronomical units, the average distance between Earth and the Sun, approximately 150
million kilometers).

Use np.load('orbits.npz') to load the data for the four planets’ orbits. Create a 3D
plot of the orbits, and compare your results with Figure 1.1.

https://matplotlib.org/api/axes_api.html

5

Figure 1.1: The solution to Problem 2.

3D Animations

The key difference between 2D and 3D animations is that the .set_data() method does not support
setting the z values. Instead, set the x and y values with .set_data() as before, and then set the z
values with .set_3d_properties(). The .set_3d_properties() function call is also made inside
the update function.

Animation in 3D requires more careful consideration than in the 2D case. When matplotlib
displays a 3D plot, it does so in an interactive figure that allows the user to change the camera angle
and position. Since 3D rendering is more computationally expensive than 2D rendering, interactive
views of 3D animations often have poor framerates and choppy rendering. The solution is to use the
tools in the matplotlib.animation module to render the animation and then embed that rendered

6 Lab 1. Introduction to Matplotlib: 3D Plotting and Animations

animation within a Jupyter Notebook. This can be done in two ways: embedding the video directly
using an HTML5 API, or encoding the animation to an .mp4 video and embedding that video.
Embedding the video directly tends to be easier, as matplotlib does not come with an .mp4 video
encoder, while it can encode video for HTML5.

Saving Animations

Saving the animation by encoding it to a .mp4 file will allow you to display the video inline inside a
Jupyter Notebook, or view it using any video player supporting the chosen filetype.

Unfortunately, Matplotlib does not come with a built-in video encoder. The matplotlib.
animation module supports several third-party encoders. FFmpeg is a lightweight solution which
can be obtained from: https://www.ffmpeg.org/download.html.

To prevent the animation from displaying while it is being rendered as video, use plt.ioff().
This turns off matplotlib’s interactive mode until plt.ion() is called. After creating the animation
object, use its .save() method with the desired filename to render and save the video. The following
code is given for reference:

animation.writer = animation.writers['ffmpeg']
plt.ioff() # Turn off interactive mode to hide rendering animations

Code to create figure, axes, update function
ani = animation.FuncAnimation(fig,update,frames,interval)
ani.save('my_animation.mp4')

To display the .mp4 video in a Jupyter Notebook, run the following code in a separate markdown
cell:

<video src="planet_ani.mp4" controls>

Problem 3. Each row of the arrays in orbits.npz gives the position of the planets at evenly
spaced time points. The arrays correspond to 1400 points in time over a 700 day period
(beginning on 2018-5-30). Create a 3D animation of the planet orbits. Display lines for the
trajectories of the orbits and points for the current positions of the planets at each point in
time. Your update() function will need to return a list of Line3D objects, one for each orbit
trajectory and one for each planet position marker. Embed your animated plot.

Surface Plotting
3D surface plotting is very similar to regular 3D plotting discussed earlier. The difference with
surface plots is that they require first creating a meshgrid for X and Y. Meshgrids are created using
the NumPy command np.meshgrid(x, y) where x and y are 1D arrays representing the x and
y coordinates of the grid. This function creates 2D arrays X and Y that combined give cartesian
cordinates for every point made from the x and y arrays.

Once a meshgrid is defined, a surface plot is generated by calling ax.plot_surface(X, Y, Z),
where Z is a 2D array of height values that is the same shape as X and Y.

https://www.ffmpeg.org/download.html

7

Problem 4. Make a surface plot of the bivariate normal density function given by:

f(x) =
1√

det(2πΣ)
exp

[
−1

2
(x− µ)T Σ−1(x− µ)

]
where x = [x, y]T , µ = [0, 0]T is the mean vector, and

Σ =

[
1 3/5

3/5 2

]
is the covariance matrix. Compare your results with Figure 1.2.

Figure 1.2: The solution to Problem 4.

Surface Animations

Animating a 3D surface is slightly different from animating a parametric curve in 3D. The object
created by .plot_surface() does not have a .set_data() method. Instead, use ax.clear() to
empty the axes at each frame, followed by a new call to ax.plot_surface(). Note that the axes
limits must be reset after ax.clear() is called.

Problem 5. Use the data in vibration.npz to produce a surface animation of the solution to
the wave equation for an elastic rectangular membrane. The file contains three NumPy arrays:

8 Lab 1. Introduction to Matplotlib: 3D Plotting and Animations

X, Y, Z. X and Y are meshgrids of shape (300,200) corresponding to 300 points in the y-direction
and 200 points in the x-direction, giving a 2x3 rectangle with one corner at the origin. Z is
of shape (150,300,200), giving the height of the vibrating membrane at each (x,y) point for
150 values of time. In the language of partial differential equations, this is the solution to the
following initial/boundary value problem:

utt = 62(uxx + uyy)

(x, y) ∈ [0, 2]× [0, 3], t ∈ [0, 5]

u(t, 0, y) = u(t, 2, y) = u(t, x, 0) = u(t, x, 3) = 0

u(0, x, y) = xy(2− x)(3− y)

	Introduction to Matplotlib: 3D Plotting and Animations

