
Contents

1 Unix Shell 1

2 More on the Unix Shell 11

3 Basic Regular Expressions 23

4 SQL 37

5 SQL II 47

6 Intro to pandas I 57

7 Intro to pandas II 73

8 Web Technologies 83

9 MongoDB 95

1

2 Contents

Lab 1

Unix Shell

Lab Objective: Introduce the basics of the Unix Shell commands the Vim text

editor

Unix was first developed by AT&T Bell Labs in the 1970s. In the 1990s, Unix

became the foundation of Linux and MacOSX. The majority of servers are written

in Linux, so having a knowledge of Unix shell commands allows us to interact with

these servers.

The more you learn about Unix, you will find it is easy to learn but difficult to

master. We will build a foundation of simple file system management and a basic

introduction to the vim text editor. We will address some of the basics in detail and

also include lists of commands that interested learners are encouraged to research

further.

File System

Navigation

Begin by opening the Terminal. The text you see in the upper left of the Terminal

window is called the prompt. We will begin using three very basic commands: pwd,

ls, and cd. The pwd command stands for print working directory. The ls command

lists the files and subdirectories within the working directory. The cd command

stands for change directory.

Problem 1. Using these commands, navigate to the Shell-Lab directory pro-

vided with this lab. We will use this directory for the remainder of the lab.

Use the ls command to list the contents of this directory. NOTE: You will

find a directory within this directory called test that is availabe for you to

experiment with the concepts and commands found in this lab. The other

files and directories are necessary for the exercises we will be doing, so take

care not to modify them.

1

2 Lab 1. Unix Shell

Flags Description

-a Do not ignore hidden files and folders

-l List files and folders in long format

-r reverse order while sorting

-s print item name and size

-t Sort output by date modified

-R Print files and subdirectories recursively

-S Sort by size

Table 1.1: Common flags of the ls command.

Flags

Most commands can be customized using flags. The ls command has dozens of op-

tional flags. Table 1.1 contains some of the most common flags for the ls command.

Multiple flags can be combined as one flag. For example, if we wanted to list

all the files in a directory in long format sorted by date modified, we would use

ls -a -l -t or ls -alt. To view the reference manual for any command, use man. For

example, to view the reference manual for the ls command, use man ls.

Other Useful Commands

Table 1.2 contains a list of commonly-used commands and their uses. Many of these

commands will be needed throughout this lab and in any typical session with the

Unix shell. After some of the commands are flags listed in square brackets that

are worth exploring using man. We highly recommend experimenting with all these

commands to become familiar with them. Remember you may freely experiment

with these commands in the test directory.

$ cd test

$ touch data.txt # create new empty file data.txt

$ mkdir New # create directory New

$ ls # list items in test directory

New data.txt

$ cp data.txt New/ # copy data.txt to New directory

$ cd New/ # enter the New directory

$ ls # list items in New directory

data.txt

$ mv data.txt new_data.txt # rename data.txt new_data.txt

$ ls # list items in New directory

new_data.txt

$ cd .. # Return to test directory

$ rm -rv New/ # Remove New directory and its contents

removed 'New/data.txt'
removed directory: 'New/'

$ clear # Clear terminal screen

3

Commands Description

clear Clear the terminal screen

cp file1 dir1 Create a copy of file1 and move it to dir1

cp file1 file2 Create a copy of file1 and name it file2

cp -r dir1 dir2 Create a copy of dir1 and all its contents into dir2

mkdir dir1 Create a new directory named dir1

mkdir -p path/to/new/dir1 Create dir1 and all intermediate directories

mv file1 dir1 Move file1 to dir1

mv file1 file2 Rename file1 as file2

rm file1 Delete file1 [-i, -v]

rm -r dir1 Delete dir1 and all items within dir1 [-i, -v]

touch file1 Create an empty file named file1

. Current directory

.. Parent directory

~ Home directory

/ Root directory

Table 1.2: Other useful commands dealing with the file system.

Problem 2. Inside the Shell-Lab directory, delete the Audio folder along with

all its contents. Create Documents, Photos, and Python directories.

Wildcards

As we are working in the file system, there will be times that we want to perform

the same command to a group of similar files. For example, if you needed to move

all text files within a directory to a new directory, the naive way to do this would

be to move each text file individually. However, this same result can be achieved

using wildcards. We use wildcards as placeholder text. We will use the * and ?

wildcards. The * wildcard represents any string and the ? wildcard represents

any single character. Though these wildcards can be used in almost every Unix

command, they are particularly useful when dealing with files. See Table 1.3

Problem 3. Within the Shell-Lab directory, there are many files. We will

organize these files into directories. Using wildcards, move all the .jpg files

to the Photos directory, all the .txt files to the Documents directory, and all

the .py files to the Python directory. You will see a few other folders in the

Shell-Lab directory. Do not move any of the files within these folders at this

point.

4 Lab 1. Unix Shell

Command Description

*.txt All files that end with .txt.

image* All files that have "image" as the first 5 characters.

py All files that contain "py" in the name.

doc*.txt All files of the form doc1.txt, doc2.txt, docA.txt, etc.

Table 1.3: Common uses for wildcards.

Pipes and Redirects

Unix becomes even more versatile and powerful when you chain multiple commands

together. This is accomplished using pipes. Rather than printing the output of a

command, the output is passed, or piped, to the next command. Two commands

are piped together using the | operator. To demonstrate the power of pipes, we will

first introduce a few commands that allow us to view the contents of a file in Table

1.4

In the first example below, the cat command output is piped to wc -l. The wc

command stands for word count. This command can be used to count words or

lines. The -l flag tells the wc command to count lines. Therefore, this first example

counts the number of lines in assignments.txt. In the second example below, the

command lists the files in the current directory sorted by size in descending order.

For details on what the flags in this command do, consult man sort.

$ cd Shell-Lab/Files/Feb

$ cat assignments.txt | wc -l

9

$ ls -s | sort -nr

12 project3.py

12 project2.py

12 assignments.txt

4 pics

total 40

In the previous example, we pipe the contents of assignments.txt to wc -l using cat

. When working with files specifically, it is better to use redirects. The same output

from the first example above can be achieved by running the following command:

$ wc -l < assignments.txt

9

If you are wanting to save the resulting output of a command to a file, use > or

>>. The > operator will overwrite anything that may exist in the output file whereas

>> will append the output to the end of the output file. For example, if we want to

append the number of lines in assignments.txt to word_count.txt, we would run the

following commmand:

$ wc -l < assignements.txt >> word_count.txt

Since grep is used to print lines matching a pattern, it is also very useful to use

in conjunction with piping. For example, ls -l | grep root prints all files associated

with the root user.

5

Command Description

cat Print the contents of a file in its entirety

more Print the contents of a file one page at a time

less Like more, but you can navigate forward and backward

head Print the first 10 lines of a file

head -nK Print the first K lines of a file

tail Print just the last 10 lines of a file

tail -nK Print the last K lines of a file

Table 1.4: Commands for printing contents of a file

Problem 4. The words.txt file in the Documents directory contains a list of

words that are not in alphabetical order. Write the number of words in words

.txt and an alphabetically sorted list of words to sortedwords.txt using pipes

and redirects. Save this file in the Documents directory. Try to accomplish this

with a total of two commands or fewer.

Searching the File System

There are two powerful commands we use for searching through our directories.

The find command is used to find files or directories in a directory hierarchy. The

grep command is used to find lines matching a string. More specifically, we can use

grep to find words inside files. We will provide a basic template in Table 1.5 for

using these two commands and leave it to you to explore the uses of the other flags.

Problem 5. In addition to the .jpg files you have already moved into the

Photots folder, there are a few other .jpg files in a few other folders within

the Shell-Lab directory. Find where these files are using the find command

and move them to the Photos folder.

Archiving and Compression

In file management, the terms archiving and compressing are commonly used inter-

changeably. However, these are quite different. To archive is to combine a certain

number of files into one file. The resulting file will be the same size as the group of

files that were archived. To compress is to take a file or group of files and shrink the

file size as much as possible. The resulting compressed file will need to be extracted

before being used.

The ZIP file format is the most popular for archiving and compressing files. If by

chance the zip Unix command is not installed on your system, you can download it

by running sudo apt-get install zip. Note that you will need to have administrative

rights to download this package. To unzip a file, use unzip.

6 Lab 1. Unix Shell

Command Description

find dir1 -type f -name "word" Find all files in dir1 with the name "word"

(-type f is for files -type d is for directories)

grep -nr "word" dir1 Find all occurances of "word" within the files inside dir1

(-n lists the line number and -r performs a recursive search)

Table 1.5: Commands using find and grep.

$ zip zipfile.zip doc?.txt

adding: doc1.txt (deflated 87%)

adding: doc2.txt (deflated 90%)

adding: doc3.txt (deflated 85%)

use -l to view contents of zip file

$ unzip -l zipfile.zip

Archive: zipfile.zip

Length Date Time Name

--------- ---------- ----- ----

5234 2015-08-26 21:21 doc1.txt

7213 2015-08-26 21:21 doc1.txt

3634 2015-08-26 21:21 doc1.txt

--------- -------

16081 3 files

$ unzip zipfile.zip

inflating: doc1.txt

inflating: doc2.txt

inflating: doc3.txt

While the zip file format is more popular on the Windows platform, the tar

utility is more common in the Unix environment. The following commands use tar

to archive the files and gzip to compress the archive.

Notice that all the commands below have the -z, -v, and -f flags. The -z flag

calls for the gzip compression tool, the -v flag calls for a verbose output, and -f

indicates the next parameter will be the name of the archive file.

use -c to create a new archive

$ tar -zcvf docs.tar.gz doc?.txt

doc1.txt

doc2.txt

doc3.txt

use -t to view contents

$ tar -ztvf <archive>

-rw-rw-r-- username/groupname 5119 2015-08-26 16:50 doc1.txt

-rw-rw-r-- username/groupname 7253 2015-08-26 16:50 doc2.txt

-rw-rw-r-- username/groupname 3524 2015-08-26 16:50 doc3.txt

use -x to extract

$ tar -zxvf <archive>

doc1.txt

doc2.txt

doc3.txt

7

Problem 6. Archive and compress the files in the Photos directory using tar

and gzip. Name the arhive pics.tar.gz and save it inside the Photos directory.

Use ls -l to see how much the files were compressed in the process.

Vim: A Terminal Text Editor

Today many have become accustomed to having GUIs (Graphic User Interfaces)

for all their applications. Before modern text editors (i.e. Microsoft Word, Pages

for Mac, Google Docs) there were terminal text editors. These text editors are

accessed, as the name suggests, from the terminal. Vim is one of the most popular

terminal text editors. For a beginner, the learning curve may be intimidating, but

as you become familiar with vim, it may become one of your preferred text editors

for writing code.

One of the major philosophies of vim is to be able to keep your fingers on the

keyboard at all times. There are countless keyboard shortcuts that allow you to

navigate the file and execute commands without relying on a mouse, toolbars, or

even the arrow keys.

In this section, we will go over the basics of navigation and a few of the most

common commands. We will also provide a list of commands that interested readers

are encouraged to research.

It has been said that at no point does somebody finish learning vim. You will

find that you will constantly be able to add something new to your arsenal.

Getting Started

We start vim with the following command:

$ vim my_file.txt

When executing this command, if my_file.txt already exists, vim will open the

file and we may begin editing the existing file. If my_file.txt does not exist, it will

be created and we may begin editting the file. For our purposes, we want to create

a new file.

You may notice if you start typing, the characters may or may not appear. This

is because vim has multiple modes. When vim starts, we are placed in command

mode. We want to be in insert mode to begin entering text. To enter insert mode

from command mode, hit the i key. You should see -- INSERT -- at the bottom of

your terminal window. Now that we are in insert mode we may begin typing.

Problem 7. Create a new file in the Documents directory named first_vim.

txt. Write at least multiple lines to this file. To return to command mode,

hit the Esc key.

8 Lab 1. Unix Shell

Command Description

a append text after cursor

A Append text to end of line

o Begin a new line below the cursor

O Begin a new line above the cursor

s Substitute characters under cursor

Table 1.6: Commands for entering insert mode

Insert mode should only be used for inserting text. It is not efficient to delete

large portions of text while in insert mode. Try to get in the habit of leaving insert

mode as soon as you are done adding the text you want to add.

Navigation

We are accustomed to navigating GUI text editors using a mouse and arrow keys.

In vim, we navigate using keyboard shortcuts while in command mode.

Problem 8. Become accustomed to navigating in command mode using the

following keys:

• k - up

• j - down

• h - left

• l - right

• w - beginning of next word

• e - end of next word

• b - beginning of previous word

• 0 - (zero) beginning of line

• $ - end of line

• g10 - go to line 10

• gg - beginning of file

• G - end of file

Alternative Ways to Enter Insert Mode

Hitting the i key is not the only way to enter insert mode. Alternative methods are

described in Table 1.6.

9

Command Description

dd delete line

dl delete letter

d4l delete 4 letters

dw delete word

d2w delete 2 words

Table 1.7: Commands for deleting in command mode

Visual Mode

Visual mode allows you to select multiple characters. Among other things, we can

use this to replace words with the s command, and we can select text to cut or copy.

Problem 9. While in command mode, enter visual mode by pressing the v

key. Using the navigation keys discussed earlier, move the cursor to select

a few words. Copy this text using the y key (stands for yank). Return to

command mode by pressing Esc. Move the cursor to where you would like to

paste the text and press the p key to paste. Similarly, select text in visual

mode and hit d to delete the text and paste it somewhere else with the p key.

Deleting Text in Command Mode

As mentioned already, you should use insert mode only for adding new text. Delet-

ing text is much more efficient and versatile in command mode. The x and X com-

mands are used to delete single characters. The d command is always accompanied

by another navigational command. See Table 1.7 for a few examples.

Quitting Vim

We quit vim by first enter last line mode. We do this by pressing the : key. When

exiting vim, we most will want to save and quit or quit without saving. To save

and quit, run :wq. To save without quiting, run :q!.

Problem 10. Save and exit the file you have created.

Customizing Vim

If you wish to customize vim commands, this is accomplished using the :map com-

mand. For example, if you plan on using vim extensively, we highly recommend you

remap Esc to a more convenient key sequence like jk. This would be accomplished

by running :map jk <Esc>. You can save these customizations in the vimrc file.

10 Lab 1. Unix Shell

Command Description

:help view vim docs

cw change word

u undo

Ctrl-R redo

. Repeat the previous command

* find next occurrence of word under cursor

find previous occurrence of word under cursor

/str find "str" in file

n find next match

N find previous match

Table 1.8: Commands for entering insert mode

A Few Closing Remarks

In the next lab, we will introduce how to access another machine through the

terminal. Vim will be essential in this situation since GUIs will not be an option.

If you are interested in continuing to use vim, you may be interested in checking

out gvim. Gvim is a GUI that uses vim commands in a more traditional text editor

window.

Also, in Table 1.8, we have listed a few more commands that are worth exploring.

If you are interested in any of these features of vim, we encourage you to research

these features further on the internet. Additionally, many people have published

their vimrc file on the internet so other vim users can learn what options are worth

exploring. It is also worth noting that we can use vim navigation commands in

many other places in the shell. For example, try using the navigation commands

when viewing the man vim page.

Lab 2

More on the Unix Shell

Lab Objective: Introduce system management, calling Unix Shell commands

within Python, and other advanced topics.

In this lab, we will build upon the foundation we built in the previous lab. As in

the last lab, the majority of learning will not be had in finsihing the problems, but

in following the examples. By the end of this lab, you will have a solid foundation

in Unix. You will be able to understand enough to learn whatever else may be

necessary to learn in the future.

File Security

To begin, run the following command while inside the Shell-Lab directory:

$ cd Shell-Lab/Python

$ ls -l

-rw-rw-r-- 1 username groupname 194 Aug 5 20:20 calc.py

-rw-rw-r-- 1 username groupname 373 Aug 5 21:16 count_files.py

-rwxr-xr-x 1 username groupname 27 Aug 5 20:22 mult.py

-rw-rw-r-- 1 username groupname 721 Aug 5 20:23 project.py

Notice the first column of the output. The first character denotes the type of

the item whether it be a normal file, a directory, a symbolic link, etc. The remain-

ing nine characters denote the permissions associated with that file. Specifically,

these permissions deal with reading, wrtiting, and executing files. There are three

categories of people associated with permissions. These are the user (the owner),

group, and others. For example, look at the output for mult.py. The first character

- denotes that mult.py is a normal file. The next three characters, rwx tell us the

owner can read, write, and execute the file. The next three characters r-x tell us

members of the same group can read and execute the file. The final three characters

--x tell us other users can execute the file and nothing more.

Permissions can be modified using the chmod command. There are two different

ways to specify permissions, symbolic permissions notation and octal permissions

notation. Symbolic permissions notation is easier to use when we want to make

small modifications to a file’s permissions. See Table 2.1.

11

12 Lab 2. More on the Unix Shell

Command Description

chmod u+x file1 Add executing permissions to user (owner)

chmod g-w file1 Remove writing permissions from group

chmod o-r file1 Remove reading permissions from other other users

chmod a+w file1 Add writing permissions to everyone

Table 2.1: Symbolic permissions notation

Command Description

chmod 760 file1 Sets rwx to user, rw- to group, and --- to others

chmod 640 file1 Sets rw- to user, r-- to group, and --- to others

chmod 775 file1 Sets rwx to user, rwx to group, and r-x to others

chmod 500 file1 Sets r-x to user, --- to group, and --- to others

Table 2.2: Octal permissions notation

Octal permissions notation is easier to use when we want to set all the permis-

sions as once. The number 4 corresponds to reading, 2 corresponds to writing, and

1 corresponds to executing. See Table 2.2.

The commands in Table 2.3 are also helpful when working with permissions.

Scripts

A shell script is a series of shell commands saved in a file. Scripts are useful when

we have a process that we do over and over again. The following is a very simple

script:

#!/bin/bash

echo "Hello World"

Save this script as hello. Note that no file type is necessary. The first line starts

with "#!". This is called the shebang or hashbang character sequence. It is followed

by the absolute path to the bash interpreter. If we were unsure where the bash

interpreter is saved, we run which bash. To execute a script, type the script name

preceded by ./

$./hello

bash: ./hello: Permission denied

Notice that you do not have permission to execute this file. This is by default

$ ls -l hello

-rw-rw-r-- 1 username groupname 31 Jul 30 14:34 hello

$ chmod u+x hello

$./hello

Hello World

You can do this same thing with Python scripts. All you have to do is change

the path following the shebang. To see where the Python interpreter is stored, run

which python.

13

Command Description

chown change owner

chgrp change group

getfacl view all permissions of a file in a readable format.

Table 2.3: Other commands when working with permissions

Command Description

df dir1 Display available disk space in file system containing dir1

du dir1 Display disk usage within dir1 [-a, -h]

free Display amount of free and used memory in the system

ps Display a snapshot of current processes

top Display interactive list of current processes

Table 2.4: Commands for resource management

Problem 1. In the Python directory you will find count_files.py. count_files

.py is a python script that counts all the files within the Shell-Lab directory.

Modify this file so it can be run as a script and change the permissions of

this script so the user and group can execute the script.

If you would like to learn how to run scripts on a set schedule, consider research-

ing cron jobs.

Resource Management

To be able to optimize performance, it is valuable to always be aware of the resources

we are using. Hard drive space and computer memory are two resources we must

constantly keep in mind. The commands found in table 2.4 are essential to managing

resources.

Job Control

Let’s say we had a series of scripts we wanted to run. If we knew that these would

take a while to execute, we may want to start them all at the same time and let

them run while we are working on something else. In the Table 2.5, we have listed

some of the most common commands used in job control. We strongly encourage

you to experiment with these commands. In the Scripts directory, you will find a

five_secs and a ten_secs script that takes five seconds and ten seconds to execute

respectively. These will be particularly useful as you are experimenting with these

commands.

$./ ten_secs &

$./ five_secs &

$ jobs

[1]+ Running ./ten_secs &

14 Lab 2. More on the Unix Shell

Command Description

COMMAND & Adding an ampersand to the end of a command

runs the command in the background

bg %N Restarts the Nth interrupted job in the background

fg %N Brings the Nth job into the foreground

jobs Lists all the jobs currently running

kill %N Terminates the Nth job

ps Lists all the current processes

Ctrl-C Terminates current job

Ctrl-Z Interrupts current job

nohup Run a command that will not be killed if the user logs out

Table 2.5: Job control commands

[2]- Running ./five_secs &

$ kill %2

[2]- Terminated ./five_secs &

$ jobs

[1]+ Running ./ten_secs &

Problem 2. In addition to the five_secs and ten-secs scripts, the Scripts

folder contains three scripts that will each take about a forty-five seconds to

execute. Execute each of these commands in the background so all three are

running at the same time. To verify all scripts are running at the same time,

write the output of jobs to a new file log.txt saved in the Scripts directory.

Python Integration

To this point, we have barely scratched the surface of all the functionality that Unix

has to offer. However, the tools and commands we have addressed so far provide

us with a foundation of the basics. Using the subprocess module in Python, we can

call Unix commands. By combining Python and the Unix commands, our toolset

is automatically broadened.

There are two functions in particular within the subprocess module we will use.

When wanting to run a Unix command, use subprocess.call(). When wanting to run

a Unix command and be able to store and manipulate the output, use subprocess

.check_output(). These functions have a keyword argument shell that defaults to

False. We want to set this argument to True to run the command in the Unix shell.

$ cd Shell-Lab/Documents

$ python

>>> import subprocess

>>> subprocess.call("ls -l", shell=True)

-rw-rw-r-- 1 username groupname 142 Aug 5 20:20 assignments.txt

-rw-rw-r-- 1 username groupname 427 Aug 5 20:21 doc1.txt

-rw-rw-r-- 1 username groupname 326 Aug 5 20:21 doc2.txt

15

-rw-rw-r-- 1 username groupname 612 Aug 5 20:21 doc3.txt

-rw-rw-r-- 1 username groupname 298 Aug 5 20:21 doc4.txt

-rw-rw-r-- 1 username groupname 1027 Aug 5 20:23 review.txt

-rw-rw-r-- 1 username groupname 920 Aug 5 23:50 words.txt

>>> files = subprocess.check_output("ls -l", shell=True)

>>> files

'-rw-rw-r-- 1 username groupname 142 Aug 5 20:20 assignments.txt\n-rw-rw-r-- 1 ←↩
username groupname 427 Aug 5 20:21 doc1.txt\n-rw-rw-r-- 1 username ←↩
groupname 326 Aug 5 20:21 doc2.txt\n-rw-rw-r-- 1 username groupname 612 ←↩
Aug 5 20:21 doc3.txt\n-rw-rw-r-- 1 username groupname 298 Aug 5 20:21 ←↩
doc4.txt\n-rw-rw-r-- 1 username groupname 1027 Aug 5 20:23 review.txt\n-rw-←↩
rw-r-- 1 username groupname 920 Aug 5 23:50 words.txt\n'

>>> files.split('\n')
['-rw-rw-r-- 1 username groupname 142 Aug 5 20:20 assignments.txt',
'-rw-rw-r-- 1 username groupname 427 Aug 5 20:21 doc1.txt',
'-rw-rw-r-- 1 username groupname 326 Aug 5 20:21 doc2.txt',
'-rw-rw-r-- 1 username groupname 612 Aug 5 20:21 doc3.txt',
'-rw-rw-r-- 1 username groupname 298 Aug 5 20:21 doc4.txt',
'-rw-rw-r-- 1 username groupname 1027 Aug 5 20:23 review.txt',
'-rw-rw-r-- 1 username groupname 920 Aug 5 23:50 words.txt',
'']

To get rid of the last empty string in the list

>>> files.pop()

''

Now that we have a list object, we can manipulate and analyze this data in ←↩
Python. We can make it even more accessible by splitting the lines again

>>> files = [line.split() for line in files]

Problem 3. Create a Shell class in Python. Write a find_file method that

will search for a filename starting in the current directory using the find

command. Write a find_word method that finds a given word within the

contents of the current directory using the grep command. For both these

functions, return a list of filepaths.

Problem 4. Write a method for the Shell class that recursively finds the n

largest files within a directory. Have a keyword argument for the directory

that defaults to the current directory. Be sure that your function only returns

files. Hint: To view the size of a file file1, you can use ls -s file1 or du file1

System Management

In this section, we will address some of the basics of system management. As an

introduction, the commands in table 2.6 are used to learn more about the computer

system.

16 Lab 2. More on the Unix Shell

Command Description

passwd Change user password

uname View operating system name

uname -a Print all system information

uname -m Print machine hardware

w Show who is logged in and what they are doing

whoami Print userID of current user

Table 2.6: Commands for system administration.

Secure Shell

Let’s say you are working for a company with a file server. Hundreds of people need

to be able to access the content of this machine, but how is that possible? Or say

you have a script to run that requires some serious computing power. How are you

going to be able to access your company’s super computer to run your script? We

do this through Secure Shell (SSH).

SSH is a network protocol encrypted using public-key cryptography. The system

we are connecting to is commonly referred to as the host and the system we are

connecting from is commonly referred to as the client. Once this connection is

established, there is a secure tunnel through which commands and files can be

exchanged between the client and host.

$ whoami # use this to see what your current login is

client_username

$ ssh my_host_username@my_hostname

You will then be prompted to enter the password for my_host_username

$ whoami # use this to verify that you are logged into the host

my_host_username

$ hostname

my_hostname

Now that you are logged in on the host computer, all the commands you execute

are as though you were executing them on the host computer.

Secure Copy

When we want to copy files between the client and the host, we use the secure

copy command, scp. The following commands are run when logged into the client

computer.

copy filename to the host's system at filepath

$ scp filename host_username@hostname:filepath

#copy a file found at filepath to the client's system as filename

$ scp host_username@hostname:filepath filename

you will be prompted to enter host_username's password in both these instances

17

Problem 5. You will either need a partner for this problem or have access

to a username on another computer. Experiment with SSH. Verify that you

can connect from a client to a host. Copy a few files between the host and

the client.

Generating SSH Keys (Optional)

If there is a host that we access on a regular basis, typing in our password over and

over again can get tedious. By setting up SSH keys, the host can identify if a client

is a trusted user without needing to type in a password. If you are interested in

experimenting with this setup, a Google search of ”How to set up SSH keys” will

lead you to many quality tutorials on how to do so.

Web Related

In many of its applications, wget and curl perform the same tasks. Both of these

commands are used to download content from the internet. Most the differences

between wget and curl are beyond the scope of this book. At its most basic, curl

is the more robust tools of the two and wget can download recursively. Though we

will provide examples using wget, know that much of the same functionality can be

performed using curl.

Downloading files using Wget

When we want to download a single file, we just need the URL for the file we want

to download. Running the command below will downlad a JPEG image of a person

writing on a chalkboard. Similarly, you can download PDF files, HTML files, and

other content simply by providing a different URL.

$ wget http://acme.byu.edu/wp-content/uploads/2013/07/0906-13-00903.jpg

The following are also useful commands using wget.

Download files from URLs listed in urls.txt

$ wget -i list_of_urls.txt

Download in the background

$ wget -b URL

Download something recursively

$ wget -r --no-parent URL

Problem 6. In the Documents directory, you will find a file named urls.txt

18 Lab 2. More on the Unix Shell

with a list of URLs. Download the files in this list using wget. Move the

pictures that will be downloaded to the Photos directory.

sed and awk

sed and awk are two different scripting languages in their own right. Like Unix, these

languages are easy to learn but difficult to master. It is very common to combine

Unix commands and sed and awk commands. We will address the basics, but if you

would like more information, see ¡url¿

Printing Specific Lines Using sed

We have already used the head and tail commands to print the beginning and end

of a file respectively. What if we wanted to print lines 30 to 40, for example? We

can accomplish this using sed. In the Documents folder, you will find the lines.txt

file. We will use this file for the following examples.

Same output as head -n3

$ sed -n 1,3p lines.txt

line 1

line 2

line 3

Same output as tail -n3

$ sed -n 3,5p lines.txt

line 3

line 4

line 5

Print lines 2-4

$ sed -n 3,5p lines.txt

line 2

line 3

line 4

Print lines 1,3,5

$ sed -n -e 1p -e 3p -e 5p lines.txt

line 1

line 3

line 5

Find and Replace Using sed

Using sed, we can also perform find and replace. We can perform this function on

the output of another commmand or we can perform this function in place on other

files. The basic syntax of this sed command is the following.

sed s/str1/str2/g

This command will replace every instance of str1 with str2. More specific ex-

amples follow.

19

$ sed s/line/LINE/g lines.txt

LINE 1

LINE 2

LINE 3

LINE 4

LINE 5

Notice the file didn't change at all

$ cat lines.txt

line 1

line 2

line 3

line 4

line 5

To save the changes, add the -i flag

$ sed -i s/line/LINE/g lines.txt

$ cat lines.txt

LINE 1

LINE 2

LINE 3

LINE 4

LINE 5

Formatting output using awk

Earlier in this lab we mentioned ls -l and as we have seen, this outputs lots of

information. Using awk, we can select which fields we wish to print. Suppose we

only cared about the file name and the permissions. We can get this output by

running the following command.

$ ls -l | awk ' {print $1, $9} '

Notice we pipe the output of ls -l to awk. Whenever we are wanting to call a

command using awk, we always use quotation marks. Note it is a common mistake

to forget to add these quotation marks. Inside these quotation marks, commands

always take the same format.

awk ' <options> {<actions>} '

In the examples we will be exploring in this lab, we will not be using any of the

options, but we will address various actions. For those interested in learning what

options are available see ¡url¿. In our first example, we use the print action. The

$1 and $9 mean that we are going to print the first and ninth fields.

Beyond specifying which fields we wish to print, we can also choose how many

characters to allocate for each field. In the Documents directory, you will find a

people.txt file that we will use for the following examples.

contents of people.txt

$ cat people.txt

male,John,23

female,Mary,31

female,Sally,37

20 Lab 2. More on the Unix Shell

male,Ted,19

male,Jeff,41

female,Cindy,25

Change the field separator (FS) to "," at the beginning of execution (BEGIN)

By printing each field individually proves we have successfully separated the ←↩
fields

$ awk ' BEGIN{ FS = "," }; {print $1,$2,$3} ' < people.txt

male John 23

female Mary 31

female Sally 37

male Ted 19

male Jeff 41

female Cindy 25

Format columns using printf so everything is in neat columns in order (gender,←↩
age,name)

$ awk ' BEGIN{ FS = ","}; {printf "%-6s %2s %s\n", $1,$3,$2} ' < people.txt

male 23 John

female 31 Mary

female 37 Sally

male 19 Ted

male 41 Jeff

female 25 Cindy

The statement "%-6s %2s %s\n" formats the columns of the output. This says to

set aside six characters left justied, then two characters right justified, then print

the last field to its full length.

Problem 7. Inside the Documents directory, you should find a file named

files.txt. This file contains details on approximately one hundred files. The

different fields in the file are separated by tabs. Using awk, sort, pipes, and

redirects, write a file named date_modified.txt with the following specifica-

tions:

• in the first column, print the date the file was modified

• in the second column, print the name of the file

• sort the file from newest to oldest based on the date last modified

All this can be accomplished using one command.

We have barely scratched the surface of what awk can do. Performing an inter-

net search for “awk one-liners” will give you many additional examples of useful

commands you can run using awk.

One Final Note

Though there are multiple Unix shells, one of the most popular is the bash shell.

The bash shell is highly customizeable. In your home directory, you will find a

hidden file named .bashrc. All customization changes are saved in this file. If you

21

are interested in customizing your shell, you can customize the prompt using the PS1

environment variable. As you become more and more familiar with the Unix shell,

you will come to find there are commands you run over and over again. You can

save commands you use frequently using alias. If you would like more information

on these and other ways to customize the shell, you can find many quality reference

guides and tutorials on the internet.

22 Lab 2. More on the Unix Shell

Lab 3

Basic Regular Expressions

Lab Objective: Learn the basics of using regular expressions to find text

Regular expressions allow for quick searching and replacing of general patterns

of text. While nearly all text editors have a feature that will find and replace exact

strings of text, regular expressions are used to find text in a much more general way.

For example, using a single regular expression, you can find every email address in

a text file without having to sift through it by hand.

Terminology and Basics

A “regular expression” is basically just a string of characters that follow a certain

syntax. Computer programs can then interpret these expressions as instructions to

search for certain kinds of text. We will often call regular expressions “patterns”,

and we will say that certain patterns “match” certain strings. The general idea is

that a regular expression represents a large set of strings (for example, all valid email

addresses), and if a specific string is in that set, we say that the regular expression

matches that string.

Warning

Regular expression libraries have been implemented and are a part of the stan-

dard distribution of nearly every programming language, and many text editors

have a find-and-replace mode that uses regular expressions. Unfortunately, the

syntax for regular expressions may be slightly different in each implementation.

There is no universal standard for all regular expressions across all platforms.

However, the orginal syntax and a few variants are very widespread, so the

basic regular expression techniques we learn in this lab should be virtually the

same in almost every situation you will encounter them.

The simplest use of regular expressions is to match text literally. For example,

the pattern "cat" matches the string "cat" but does not match the strings "dog" or

"bat".

23

24 Lab 3. Basic Regular Expressions

Now that we have a general idea of what regular expressions are, we will see

how to use them in Python.

Regular Expressions in Python

The python package re contains the functionality for using regular expressions. To

use it, simply run the command import re.

The following Python code demonstrates what we said earlier about the regular

expression "cat":

>>> bool(re.match("cat", "cat"))

True

>>> bool(re.match("cat", "dog"))

False

>>> bool(re.match("cat", "bat"))

False

The main functions we will use are re.match(pattern, string_to_test) and re.

compile(pattern). You can think of re.match as returning a boolean value representing

whether the given pattern matched the given string. The function re.compile returns

a compiled object that represents a regular expression. You can then call the match

function on this compiled object to get a boolean value. There is a similar function,

re.search, which will match the regular expression anywhere inside a given string.

We will see one example shortly where re.search is preferred in multiline matching.

The following code shows an example of how to use re.compile:

>>> pattern = re.compile("any regular expression")

>>> result = pattern.match("any string")

The above code is equivalent to the following:

>>> result = re.match("any regular expression", "any string")

Most programs use the compiled form (the first of the above two examples) for

efficiency.

When constructing a regular expression, it is best to construct your pattern

string using Python’s syntax for raw strings by prefacing the string with the '

r' character. This causes the constructed string to treat backslashes as actual

backslash characters, rather than the start of an escape sequence.

For example:

>>> normal = "hello\nworld"

>>> raw = r"hello\nworld"

>>> print normal

hello

world

>>> print raw

hello\nworld

>>> type(normal), normal

(str, 'hello\nworld')
>>> type(raw), raw

(str, 'hello\\nworld')

25

Note that raw and normal are both python strings; one was just constructed dif-

ferently. Also notice that when we constructed raw, it inserted an extra backslash

before the existing backslash.

We use raw strings because the backslash character is a very important special

character in regular expressions. If we wanted to use backslash characters as part of

a normally-constructed Python string, we would need to either escape every single

backslash by using two backslashes each time, or we could take the much easier

and less confusing route of using Python’s raw strings. To demonstrate this effect,

suppose we wanted to know whether the regular expression "\$3\.00" matched the

string "$3.00". We could get our answer in either of the following ways:

>>> bool(re.match("\\$3\\.00", "$3.00"))
True

>>> bool(re.match(r"\$3\.00", "$3.00"))
True

(You will see why this pattern matches this string soon)

Remember, readability counts.

Literal Characters and Metacharacters

The following characters are used as metacharacters in regular expressions:

. ^ $ * + ? { } [] \ | ()

These characters mean special things when used in regular expressions, making the

vast power of regular expressions possible. We will get to using these characters

later. For now, what do we do if want to match these characters literally? We

simply escape these characters using the metacharacter '\':

>>> pattern = re.compile(r"\$2\.95, please")

>>> bool(pattern.match("$2.95, please"))

True

>>> bool(pattern.match("$295, please"))

False

>>> bool(pattern.match("$2.95"))
False

Problem 1. Define the variable pattern_string using literal characters and

escaped metacharacters in such a way that the following python program

prints True:

import re

pattern_string = r"" # Edit this line

pattern = re.compile(pattern_string)

print bool(pattern.match("^{(!%.*_)}&"))

26 Lab 3. Basic Regular Expressions

A little misleadingly, the re.match method isn’t actually checking whether the

given regular expression matches entire strings. Rather, it checks whether the reg-

ular expression matches at the beginning of the string, even if the string continues

on afterward. For example:

>>> pattern = re.compile(r"x")

>>> bool(pattern.match("x"))

True

>>> bool(pattern.match("xabc"))

True

>>> bool(pattern.match("abcx"))

False

You might not expect the pattern 'x' to match the string "xabc", but it does.

This can cause confusion and headache, so we’ll have to be a little more precise

with the help of metacharacters.

The line anchor metacharacters, '^' and '$', are used to match the start and

the end of a line of text, respectively. Let’s see them in action:

>>> pattern = re.compile(r"^x$")
>>> bool(pattern.match("x"))

True

>>> bool(pattern.match("xabc"))

False

>>> bool(pattern.match("abcx"))

False

An added benefit of using '^' and '$' is that they allow you to search across mul-

tiple lines. For example, how would we match "World" in the string "Hello\nWorld"?

Using re.MULTILINE in the re.search function will allow us to match at the beginning

of each new line, instead of just the beginning of the string. Since we have seen

two ways to match strings with regex expressions, the following shows two ways to

implement multiline searching:

>>>bool(re.search("^W","Hello\nWorld"))

False

>>>bool(re.search("^W","Hello\nWorld", re.MULTILINE))

True

>>>pattern1 = re.compile("^W")

>>>pattern2 = re.compile("^W", re.MULTILINE)

>>>bool(pattern1.search("Hello\nWorld"))

False

>>>bool(pattern2.search("Hello\nWorld"))

True

For simplicity, the rest of the lab will focus on single line matching.

Let’s move on to '(', ')', and '|'. The '|' character (the “pipe” character,

usually found on the key below the backspace key) matches one of two or more

regular expressions:

>>> pattern2 = re.compile(r"^red$|^blue$")
>>> pattern3 = re.compile(r"^red$|^blue$|^orange$")
>>> bool(pattern2.match("red")), bool(pattern3.match("red"))

(True, True)

27

>>> bool(pattern2.match("blue")), bool(pattern3.match("blue"))

(True, True)

>>> bool(pattern2.match("orange")), bool(pattern3.match("orange"))

(False, True)

>>> bool(pattern2.match("redblue")), bool(pattern3.match("redblue"))

(False, False)

You can think of '|' as doing an “or” operation. How would we create a regu-

lar expression that matched both "one fish" and "two fish"? Although the regular

expression "one fish|two fish" works, there is a better way, by using both the pipe

character and parentheses:

>>> pattern = re.compile(r"^(one|two) fish$")
>>> bool(pattern.match("one fish"))

True

>>> bool(pattern.match("two fish"))

True

>>> bool(pattern.match("three fish"))

False

>>> bool(pattern.match("one two fish"))

False

As the above example demonstrates, parentheses are used to group sequences of

characters together and change the order of precedence of the metacharacters, much

like how parentheses work in an arithmetic expression such as 3*(4+5). In regular

expressions, the '|' metacharacter has the lowest precedence out of all the metachar-

acters.

Parentheses actually have more uses, which we will learn later. For now, note

that parentheses aren’t matched literally:

>>> bool(re.match(r"r(hi)no(c(e)ro)s", "rhinoceros"))

True

Parentheses help give regular expressions higher precedence. For example, "^one

|two fish$" gives precedence to the invisible string concatenation between "two" and

"fish" while "^(one|two) fish$" gives precedence to the '|' metacharacter.

Problem 2. Define the variable pattern_string using the metacharacter '|'

and parentheses in such a way that the following python program prints True:

import re

pattern_string = r"" # Edit this line

pattern = re.compile(pattern_string)

strings_to_match = ["Book store", "Book supplier", "Mattress store", "←↩
Mattress supplier", "Grocery store", "Grocery supplier"]

print all(pattern.match(string) for string in strings_to_match)

Your regular expression should not match any other string, including strings

such as "Book store sale".

28 Lab 3. Basic Regular Expressions

Character Classes

The metacharacters '[' and ']' are used to create character classes. Here they are

in action:

>>> pattern = re.compile(r"[xy]")

>>> bool(pattern.match("x"))

True

>>> bool(pattern.match("y"))

True

>>> bool(pattern.match("z"))

False

>>> bool(pattern.match("x: Why does this match? Were you paying attention?"))

True

In essence, a character class will match any one out of several characters.

Inside character classes, there are two additional metacharacters: '-' and '^'.

Although we’ve already seen '^' as a metacharacter, it has a different meaning when

used inside a character class. When '^' appears as the first character in a character

class, the character class matches anything not specified instead. Think of '^' as

performing a set complement operation on the character class. For example:

>>> pattern = re.compile(r"^[^ab]$")
>>> bool(pattern.match("x"))

True

>>> bool(pattern.match("#"))

True

>>> bool(pattern.match("a"))

False

>>> bool(pattern.match("b"))

False

Note that the two '^' characters mean completely different things; the first

'^' anchors us at the beginning of the line, while the second '^' performs a set

complement operation on the character class "[ab]".

The other character class metacharacter is '-'. This is used to specifiy a range

of values. For example:

>>> pattern = re.compile(r"^[a-z][0-9][0-9]$")
>>> bool(pattern.match("a90"))

True

>>> bool(pattern.match("z73"))

True

>>> bool(pattern.match("A90"))

False

>>> bool(pattern.match("zs3"))

False

Multiple ranges or characters can be included in a single character class; in this

case, the character class will match any character that fits either criterion:

>>> pattern = re.compile(r"^[abcA-C][0-27-9]$")
>>> bool(pattern.match("b8"))

True

>>> bool(pattern.match("B2"))

29

True

>>> bool(pattern.match("a9"))

True

>>> bool(pattern.match("a4"))

False

>>> bool(pattern.match("E1"))

False

Notice in the first line that [abcA-C] acts like [a|b|c|(A-C)] and [0-27-9] acts like

[(0-2)|(7-9)].

Finally, there are some built-in shorthands for certain character classes:

• '\d' (think “digit”) matches any digit. It is equivalent to "[0-9]".

• '\w' (think “word”) matches any alphanumeric character or underscore. It is

equivalent to "[a-zA-Z0-9_]".

• '\s' (think “space”) matches any whitespace character. It is equivalent to

"[\t\n\r\f\v]".

The following character classes are the complements of those above:

• '\D' is equivalent to "[^0-9]" or "[^D]"

• '\W' is equivalent to "[^a-zA-Z0-9_]" or "[^W]"

• '\S' is equivalent to "[^ \t\n\r\f\v]" or "[^S]"

These character classes can be used in character classes; for example, "[_A-Z\s]"

will match an underscore, any capital letter, or any whitespace character.

The '.' metacharacter, equivalent to "[^\n]" on UNIX and "[^\r\n]" on Win-

dows, matches any character except for a line break. For example:

>>> pattern = re.compile(r"^.\d.$")
>>> bool(pattern.match("a0b"))

True

>>> bool(pattern.match("888"))

True

>>> bool(pattern.match("n2%"))

True

>>> bool(pattern.match("abc"))

False

>>> bool(pattern.match("m&m"))

False

>>> bool(pattern.match("cat"))

False

Problem 3. Define the variable pattern_string in such a way that the fol-

lowing python program prints True:

import re

pattern_string = r"" # Edit this line

pattern = re.compile(pattern_string)

30 Lab 3. Basic Regular Expressions

strings_to_match = ["a", "b", "c", "x", "y", "z"]

uses_line_anchors = (pattern_string.startswith('^') and pattern_string.←↩
endswith('$'))

solution_is_clever = (len(pattern_string) == 8)

matches_list = all(pattern.match(string) for string in strings_to_match)

print uses_line_anchors and solution_is_clever and matches_list

Problem 4. A valid python identifier (aka a valid variable name) is defined

as any string composed of an alphabetic character or underscore followed by

any (possibly empty) sequence of alphanumeric characters and underscores.

Define the variable identifier_pattern_string that defines a regular expres-

sion that matches valid python identifiers that are exactly five characters

long.

To help you test your pattern, the following program should print True.

(This is necessary but not sufficient to show your regular expression is cor-

rect):

import re

identifier_pattern_string = r"" # Edit this line

identifier_pattern = re.compile(identifier_pattern_string)

valid = ["mouse", "HORSE", "_1234", "__x__", "while"]

not_valid = ["3rats", "err*r", "sq(x)", "too_long"]

print all(identifier_pattern.match(string) for string in valid) and not ←↩
any(identifier_pattern.match(string) for string in not_valid)

Hint: Use the '\w' character class to keep your regular expression rela-

tively short.

Note

As you might have noticed, using this definition, "while" is considered a

valid python identifier, even though it really is a reserved word. In the

following problems, we will make a few other simplifying assumptions

about the python language.

Repetition

Suppose in the last problem we wanted the string to be 20 characters long. You

wouldn’t want to write \w 20 times. In fact, what if you wanted to match at most one

instance of a character or a number with at least three digits? The metacharacters

31

'*', '+', '{', and '}' are very useful for repetition.

The '*' metacharacter means “Match zero or more times (as many as possible)”

when it follows another regular expression. For instance:

>>> pattern = re.compile(r"^a*b$")
>>> bool(pattern.match("b"))

True

>>> bool(pattern.match("ab"))

True

>>> bool(pattern.match("aab"))

True

>>> bool(pattern.match("aaab"))

True

>>> bool(pattern.match("abab"))

False

>>> bool(pattern.match("abc"))

False

The '+' metacharacter means “Match one or more times (as many as possible)”

when it follows another regular expression. As an example:

>>> pattern = re.compile(r"^h[ia]+$")
>>> bool(pattern.match("ha"))

True

>>> bool(pattern.match("hii"))

True

>>> bool(pattern.match("hiaiaa"))

True

>>> bool(pattern.match("h"))

False

>>> bool(pattern.match("hah"))

False

It’s important to understand why "hiaiaa" is a match here; matching multiple

times means matching the preceeding expression multiple times, not matching the

results of the preceeding expression multiple times. We haven’t yet learned how to

construct a regular expression with that behavior.

The '?' metacharacter means “Match one time (if possible) or do nothing (i.e.

match zero times)” when it follows another regular expression:

>>> pattern = re.compile(r"^abc?$")
>>> bool(pattern.match("abc"))

True

>>> bool(pattern.match("ab"))

True

>>> bool(pattern.match("abd"))

False

>>> bool(pattern.match("ac"))

False

The curly brace metacharacters are used to specify a more precise amount of

repetition:

>>> pattern = re.compile(r"^a{2,4}$")
>>> bool(pattern.match("a"))

False

32 Lab 3. Basic Regular Expressions

>>> bool(pattern.match("aa"))

True

>>> bool(pattern.match("aaa"))

True

>>> bool(pattern.match("aaaa"))

True

>>> bool(pattern.match("aaaaa"))

False

If two arguments x and y are given to the curly braces (i.e., {x, y}), the preceeding

regular expression must appear between x and y times, inclusive, in order for the

overall expression to match.

Warning

In this last example, line anchors can save us from a lot of confusion. Note

the differences between the following example and the example immediately

above:

>>> pattern = re.compile(r"a{2,4}")

>>> bool(pattern.match("a"))

False

>>> bool(pattern.match("aa"))

True

>>> bool(pattern.match("aaa"))

True

>>> bool(pattern.match("aaaa"))

True

>>> bool(pattern.match("aaaaa"))

True

If only one argument x is given and is followed by a comma, the preceeding

regular expression must match x or more times. If only one argument x is given

without a comma, the preceeding regular expression must match exactly x times.

For example:

>>> exactly_three = re.compile(r"^a{3}$")
>>> three_or_more = re.compile(r"^a{3,}$")
>>> def test_both_patterns(string):

... return bool(exactly_three.match(string)), bool(three_or_more.match(string←↩
))

>>> test_both_patterns("a")

(False, False)

>>> test_both_patterns("aa")

(False, False)

>>> test_both_patterns("aaa")

(True, True)

>>> test_both_patterns("aaaa")

(False, True)

>>> test_both_patterns("aaaaa")

(False, True)

You can also test {,x} which will match the preceeding regular expression up to x

times.

33

Problem 5. Modify your definition of identifier_pattern_string from the

previous problem to match valid python identifiers of any length.

Problem 6. A valid python parameter definition is defined as the concate-

nation of the following strings:

• any valid python identifier

• any number of spaces

• (optional) an equals sign followed by any number of spaces and ending

with one of the following: any real number, a single quote followed by

any number of non-single-quote characters followed by a single quote,

or any valid python identifier

Define a variable parameter_pattern_string that defines a regular expression

that matches valid python parameter definitions.

For example, each element of ["max=4.2", "string= ''", "num_guesses", "

msg ='\\'", "volume_fn=_CALC_VOLUME"] is a valid python parameter definition,

while each element of ["300", "no spaces", "is_4=(value==4)", "pattern = r'^

one|two fish$'", 'string="these last two are actually valid in python, but they

should not be matched by your pattern"'] is not.

Regular Expressions in the Unix Shell

As we have seen thusfar, regular expressions are very useful when we want to match

patterns. Regular expressions can be used when matching patterns in the Unix

Shell. Though there are many Unix commands that take advantage of regular

expressions, we will focus on grep and awk.

Regular Expressions and grep

Recall from Lab 1 that grep is used to match patterns in files or output. It turns

out we can use regular expressions to define the pattern we wish to match.

In general, we use the following syntax:

$ grep 'regexp' filename

We can also use regular expressions when piping output to grep.

List details of directories within current directory.

$ ls -l | grep ^d

34 Lab 3. Basic Regular Expressions

Regular Expressions and awk

As in Lab 2, we will be using awk to format output. By incorporating regular

expressions, awk becomes much more robust. Before GUI spreedsheet programs like

Microsoft Excel, awk was commonly used to visualize and query data from a file.

Including if statements inside awk commands gives us the ability to perform

actions on lines that match a given pattern. The following example prints the

filenames of all files that are owned by freddy.

$ ls -l | awk ' {if ($3 ~ /freddy/) print $9} '

Because there is a lot going on in this command, we will break it down piece-by-

piece. The output of ls -l is getting piped to awk. Then we have an if statement.

The syntax here means if the condition inside the parenthesis holds, print field 9

(the field with the filename). The condition is where we use regular expressions.

The ~ checks to see if the contents of field 3 (the field with the username) matches

the regular expression found inside the forward slashes. To clarify, freddy is the reg-

ular expression in this example and the expression must be surrounded by forward

slashes.

Consider a similar example. In this example, we will list the names of the

directories inside the current directory. (This replicates the behavior of the Unix

command ls -d */)

$ ls -l | awk ' {if ($1 ~ /^d/) print $9} '

Notice in this example, we printed the names of the directories, whereas in one

of the example using grep, we printed all the details of the directories as well.

Warning

Some of the definitions for character classes we used earlier in this lab will

not work in the Unix Shell. For example, \w and \d are not defined. Instead

of \w, use [[:alnum:]]. Instead of \d, use [[:digit:]]. For a complete list of

similar character classes, search the internet for “POSIX Character Classes”

or “Bracket Character Classes.”

Problem 7. You have been given a list of transactions from a fictional start-

up company. In the transactions.txt file, each line represents a transaction.

Transactions are represented as follows:

Notice the semicolons delimiting the fields. Also, notice that in ←↩
between the last and first name, that is a comma, not a semicolon.

<ORDER_ID>;<YEAR><MONTH><DAY>;<LAST>,<FIRST>;<ITEM_ID>

Using this set of transactions, produce the following information using

regular expressions and the given command:

35

• Using grep, print all transactions by either Nicholas Ross or Zoey Ross.

• Using awk, print a sorted list of the names of individuls that bought

item 3298.

• Using awk, print a sorted list of items purchased between June 13 and

June 15 of 2014 (inclusive).

These queries can be produced using one command each.

We encourage the interested reader to research more about how regular expres-

sions can be used with sed.

36 Lab 3. Basic Regular Expressions

Lab 4

SQL and Relational
Databases

Lab Objective: Understand concepts of a relational database and the fundamen-

tals of the SQL language via SQLite.

When working with large amounts of data, it is important to be able to quickly

find and retrieve interesting information. Fortunately, there is a way to handle such

massive amounts of data in a reasonably efficient way: a database. A database is

simply a structured repository of data, and it allows us to store and retrieve infor-

mation very quickly. It is managed by a database management system, or DBMS.

The DBMS is software that allows users to interact directly with the database.

Relational Databases

A relational database is a paradigm for organizing data inside of a database. In

this paradigm, the data are broken down into tuples of information. These tuples

are then grouped into tables, or relations, each of which is simply a set of tuples.

Each table has a schema that defines the attributes of the tuples within the table.

If we fix an order to the attributes in the schema, we can think of each attribute as

a column of the table, and each tuple as a row of the table. See Figure 4.1 for an

illustration of these ideas.

As an example, suppose we have demographic data for a large number of in-

dividuals. If we are interested in the gender and age of the individuals, we might

make a table with schema (Name, Gender, Age). This table would consist of sev-

eral 3-tuples, such as (Jane Doe, F, 20). Alternatively, we can view this table as

having three columns and as many rows as there are individuals within our data

set. We might also create a table with schema (Name, Employment Status, Income,

Education).

In the relational paradigm, there must be at least one attribute in each schema

that can act as a primary key. This can uniquely identify each tuple of the table. It

is common to use an ID number or other such unique information for the primary

key. In our example above, the “Name” attribute acted as a primary key. However,

this attribute only works as a primary key provided no two individuals within the

data set have the same name.

37

38 Lab 4. SQL

Tuple

Relation

Attribute

Figure 4.1: Elements of a relation.

One important feature of a database is the transaction, which is a conceptual

protocol for interacting with the database. Most relational databases are transac-

tional databases. The best way to conceptualize this is imagine that your database

is like a bank. Your connection to the database is analogous to the bank teller.

When you make one or more deposits and withdrawals, you are making a transac-

tion. A database transaction should have certain properties to protect the integrity

of the data. These properties are described in detail in en.wikipedia.org/wiki/ACID

Introduction to SQL

Most common DBMSs use a variant of the SQL language to interact with the

database. SQL is an acronym for Structured Query Language, and may be pro-

nounced like the word “sequel” or by saying the letters “s”, “q”, and “l” separately.

While SQL is not generally portable across different DBMSs, we will focus on the

parts of SQL that are relatively common. In particular, we will base our discussion

on the SQLite database management system, a very popular DBMS.

SQL consists of blocks of code called statements. Each statement is made up

of clauses which may or may not require predicates. Predicates specify conditions

that can limit the effect of a clause.

Note

SQL commands are often written in all caps to help distinguish them from

the other parts of the query. It is only a matter of style. SQLite, along with

most other database managers, is case insensitive. In Python’s SQL interface,

the semicolon is also not needed. However, most other database systems will

require it, so it’s a good idea to conform in Python.

Let’s look at an example SQL statement:

39

Keyword Syntax

CREATE TABLE CREATE TABLE <table> (<col1> <type>, <col2> <type>, ...);

DROP TABLE DROP TABLE <table>;

CREATE INDEX CREATE INDEX <name> ON <table> (<col>);

DROP INDEX DROP INDEX <name>;

Table 4.1: The SQL Schema commands

Keyword Syntax

INSERT INTO INSERT INTO <table> <attributes> VALUES (<value1>, <value2>, ...);

UPDATE UPDATE <table> SET (<col1>=<val1>, <col2>=<val2>, ...) WHERE <condition>;

DELETE DELETE FROM <table> WHERE <condition>;

SELECT SELECT <attributes> FROM <table> WHERE <condition>;

Table 4.2: The SQL Data Manipulation commands

SELECT * FROM table WHERE id=3+1 AND name='Bob';

This statement includes a SELECT clause and a WHERE clause. The WHERE

clause contains two predicates: id=3+1 and name=’Bob’. These two predicates

limit the effect of the SELECT clause because any resulting tuples in the table

must satisfy both conditions. This entire statement is classified as a query since it

does not modify the database in any way.

SQL has several classes of statements. The two main classes we will cover in

this lab are schema (Table 4.1) and data manipulation (Table 4.2). We will give

you a simplified description of each command and its syntax. You are encouraged

to look up the full syntax outside of this lab.

SQL in Python

Python has built-in support for SQLite databases using the standard library. Let’s

open a database called test1.

import sqlite3 as sql

db = sql.connect("test1")

The connect() function is used to connect to a database. If it does not already exist,

then a new database will be created using the string passed as the argument for the

name. The new database was created as a file in the current working directory.

To execute SQL commands, we need to get a cursor object from the database.

cur = db.cursor()

The cursor object has several useful methods (Table 4.3).

Before creating a table, we need to understand how SQLite stores information

in a database. SQLite uses five native data types (a simplified system from other

SQL database managers). Table 4.4, gives a mapping between Python and SQLite

native types.

40 Lab 4. SQL

Method Description

execute Execute a single SQL statement

executemany Execute a single SQL statement over a sequence

executescript Execute a SQL script (multiple SQL commands)

close Closes the cursor object

Table 4.3: Cursor object methods

Python Type SQLite Type

None NULL

int INTEGER

long INTEGER

float REAL

str TEXT

buffer BLOB

Table 4.4: Python and SQLite types mapping

Creating and Dropping Tables

Let’s create a table.

cur.execute('CREATE TABLE student_information (StudentID INTEGER NOT NULL, Name ←↩
TEXT, SSN INTEGER, MajorCode INTEGER);')

This will create the empty table in Table 4.5.

The arguments in parentheses are the column names followed by the data type

that entries in that column will be, and together these form the schema of the table.

The INTEGER data type in SQLite is a 1, 2, 3, 4, 6, or 8 byte integer depending on the

value. The NOT NULL command is a constraint on the StudentID column. It requires

that all records in the table have a student ID.

Note

SQLite does not enforce types on columns. Just like Python, SQLite is dynam-

ically typed. However, most other database systems strictly enforce column

types. It is a good idea to conform to the column types specified in the schema.

Note that each command we execute returns the same cursor object. This object

is equipped with a method that allows us to look at any results of the previous

command. The result is formally known as the result set. If you use cur.fetchall(),

you will see an empty list. That is because the create table command does not

return a result set.

StudentID Name SSN MajorCode

Table 4.5: student information

41

StudentID Name SSN MajorCode

55 John Smith 372897382 2

Table 4.6: student information

Now we want to build a relation between students, the courses they’ve had, and

their grades in those courses.

cur.execute('CREATE TABLE student_classes (StudentID INT NOT NULL, CourseID INT, ←↩
Grade TEXT);')

Problem 1. In this problem you will create two new tables. The first table

will be called MajorInfo and have a column called MajorCode and Major-

Name. MajorCode is an integer and MajorName is a string.

The second table will be called CourseInfo and have columns called Cour-

seID and CourseName, also integers and strings, respectively.

We can also destroy tables using the DROP TABLE command.

cur.execute("CREATE TABLE test_table (id int, name text);")

We can delete the table by dropping it.

cur.execute("DROP TABLE test_table;")

If a table doesn’t exist, an exception will be raised. We can tell the database to

drop the table only if it really exists by using DROP TABLE IF EXISTS test_table;.

Inserting and Removing Data

Let’s insert some data into our new tables. We can add rows to tables using the

INSERT INTO command.

cur.execute("INSERT INTO student_information VALUES(55, 'John Smith', 372897382, ←↩
2);")

After running this statement, we will have the table in Table 4.6.

Note that SQLite will assume that values match sequentially with the schema

of the table. We can also specify the schema of the table to use in the mapping of

the values.

cur.execute("INSERT INTO student_information(MajorCode, Name, SSN, StudentID) ←↩
VALUES(55, 'John Smith', 372897382, 2);")

This will map the value 55 to MajorCode and the value 2 to StudentID. This may

be useful sometimes.

42 Lab 4. SQL

It can quickly become tedious to insert large amounts of data into a table, one

row at a time. We can automate the process somewhat by using the executemany

method of the cursor object. To insert several rows into a table using a single

command, we can do the following:

cur.executemany("INSERT INTO student_information VALUES (?, ?, ?, ?);", rows)

In the code above, we assume that rows is a Python list of tuples, each tuple con-

taining the data for one row.

We may remove rows from a table using the DELETE FROM command.

cur.execute("DELETE FROM student_information WHERE MajorCode=55;")

Warning

Never use Python’s string operations to construct a SQL query. It is ex-

tremely insecure and is an easy target for a well known type of database called

a SQL injection attack.

Parameter substitution can be used to construct dynamic queries. In the

simplest way, it involves using a ‘?’ character whenever you want to use a

value and providing a sequence of values as a second argument to execute().

statement = "INSERT INTO student_information VALUES(?, ?, ?, ?);"

values = (55, 'John Smith', 372897382, 2)

cur.execute(statement, values)

Updating Rows of a Table

We can modify records in a table by using the UPDATE command.

cur.execute("UPDATE student_information SET MajorCode=2, StudentID=55, Name='←↩
Jonathan Smith' WHERE StudentID=2;")

Note

When updating a table, having a sufficient WHERE clause is essential. Any record

that matches the criteria will be modified. If we omitted the WHERE clause, every

record in the table would be set to the values given in the example.

Problem 2. The ICD is a large collection of codes used to classify any

diagnosis that a doctor would make. When someone goes to the hospital

or doctors office, their visit will be recorded using these codes. Insurance

companies, the government, and researchers find this data useful. The data

43

file provided to you, icd9.csv, has simulated health histories for one million

persons. Each line has columns for identification number, gender, and age,

followed by ICD-9 codes of various quantities. Note that the codes for each

individual are written in a single string, each code separated by semicolons.

Create a new database with a single table to store all the simulated data.

Yourn table should have four columns, one each for id number, gender, age,

and codes.

Because of the volume of data, it is highly recommended you use the

executemany() method of the cursor. It will be about twice as fast as using

an execute() for each line of the CSV file. Recall the csv package in Python.

To read a CSV file into a list of tuples, where each tuple consists of the

delimited values of a particular line in the file, one can use the following

code as a guideline:

import csv

with open('filename', 'rb') as csvfile:

rows = [row for row in csv.reader(csvfile, delimiter=',')]

Problem 3. Create the following tables in the same database you created

in Problem 2. You may do so however you think is best.

StudentID Name MajorCode

401767594 Michelle Fernandez 1

678665086 Gilbert Chapman 1

553725811 Roberta Cook 2

886308195 Rene Cross 3

103066521 Cameron Kim 4

821568627 Mercedes Hall 3

206208438 Kristopher Tran 2

341324754 Cassandra Holland 1

262019426 Alfonso Phelps 3

622665098 Sammy Burke 2

Table 4.7: students

ID Name

1 Math

2 Science

3 Writing

4 Art

Table 4.8: majors

44 Lab 4. SQL

StudentID ClassID Grade

401767594 4 C

401767594 3 B-

678665086 4 A+

678665086 3 A+

553725811 2 C

678665086 1 B

886308195 1 A

103066521 2 C

103066521 3 C-

821568627 4 D

821568627 2 A+

821568627 1 B

206208438 2 A

206208438 1 C+

341324754 2 D-

341324754 1 A-

103066521 4 A

262019426 2 B

262019426 3 C

622665098 1 A

622665098 2 A-

Table 4.9: grades

ClassID Name

1 Calculus

2 English

3 Pottery

4 History

Table 4.10: classes

Selecting Data From Tables

The process of retrieving data from a table in a database is accomplished by the

SELECT statement. The SELECT statement can be thought of as a very high level set

description. For example, to view the contents of an entire table, we simply need

to unconditionally select its contents.

SELECT * FROM students;

This is equivalent to the following set (where x is a row).

{x : x ∈ classes}

45

StudentID Name

401767594 Michelle Fernandez

678665086 Gilbert Chapman

341324754 Cassandra Holland

Table 4.11: Selected students who are math majors.

Method Description

fetchone() Return a single row from the result set

fetchmany(n) Return the next n rows from the result set

fetchall() Return the entire result set

Table 4.12: Fetch methods of a cursor.

We can also select specific columns.

SELECT StudentID, Name FROM students;

Or we can impose conditions on the selected rows.

SELECT StudentID, Name FROM students WHERE MajorCode=1;

This query results in the following table (Table 4.11) where the contents are all the

students that are math majors.

Select statements return a result set. This is an iterable object. Each row in the

object is represented as a tuple of values.

cur.execute('SELECT StudentID, Name FROM students WHERE MajorCode=1;')
for student in cur:

print student

We can also use the fetch methods of the returned cursor to extract rows from the

result set (Table 4.12).

Problem 4. From the ICD9 table you created in Problem 2, how many men

between the ages of 25 and 35 are there? How many women between those

same ages?

When an Error Occurs

It is important to be able to recover from errors gracefully, especially when working

a database. Data integrity in a database is often a critical need. When an error

occurs, we need to undo the changes that triggered the error. Fortunately, sqlite3

reports a variety of errors. These errors and when they are raised is explained in

PEP249 (http://legacy.python.org/dev/peps/pep-0249/).

Error The base class for errors thrown by sqlite3. All other errors inherit from

this class. Catching this error will catch any error raised.

http://legacy.python.org/dev/peps/pep-0249/

46 Lab 4. SQL

InterfaceError Raised when there is a problem with the interface to the database

rather than the database itself.

DatabaseError Raised when there is an error with the database itself.

DataError Subclass of DatabaseError. Raised when there are errors in the pro-

cessed data (division by zero, value out of range, etc.).

OperationalError Subclass of DatabaseError. Raised for errors related to the

database that are not the fault of the programmer. For example, an unex-

pected disconnect, failure to process a transaction, a memory allocation error

during a transaction, etc.

IntegrityError Subclass of DatabaseError. Raised when the relational integrity

of the database is compromised.

InternalError Subclass of DatabaseError. Raised when there is an internal error

such as an invalid cursor, out-of-sync transaction, etc.

ProgrammingError Subclass of DatabaseError. Raised for programming errors.

NotSupportedError Subclass of DatabaseError. Raised when a method is called

that is not supported by the database.

The way to gracefully recover from errors is to catch them and handle them

accordingly. For example, if any error occurs, with the interface or the database,

we immediately rollback the transaction. If no error occurs, commit. We could use

if-statements or we could use a try-except block.

try:

<code>

db.commit()

except sql.Error:

db.rollback()

Note that rolling back is not needed if we are just performing queries. If we don’t

change any of the data in the database, there is no need to roll anything back.

However, even with queries, there is the potential for errors. You must design your

code to handle these errors gracefully.

Ending the SQL Session

Once we are finished performing SQL statements and interacting with the database,

we need to commit our changes and safely close the connection to the database. This

can be done by calling methods on the database connection object.

db.commit() #save changes made in the transaction

db.close() #safely close the database

A database connection is automatically closed in Python when the connection

object is garbage-collected. However, it is nice to be safe and explicit in closing a

database connection using the close() method.

Lab 5

Advanced SQL

Lab Objective: Learn more of the advanced and specialized features of SQL.

Database Normalization

Normalizing a database is the process of organizing tables and columns to mini-

mize the amount of redundant information in the database. For example, a non-

normalized database might have a table that stores customer contact information

and a table that contains all of the products a company has sold. However, they

might want to track who buys what products in case they need to contact them

later. To do so, they store all the contact information of a particular buyer along

with every item they purchased. Now, two tables store the customer contact infor-

mation. If we needed to update a customer’s phone number, we have to update two

tables. While that may not be bad for small databases, larger databases would be

near impossible to update correctly. The idea of normalizing a database allows us

to store all customer contact information in one place in the database. All other

tables that might need a customer’s name, phone number, or address would refer-

ence the contact information table. When an update needs to be performed, we

only need to update the contact information table. Then any table that references

this information is also automatically up to date.

To properly normalize a database, we need to discuss the types of relations

tables might have.

One to One

This is the simplest relation to model. A single table can be used to express this

relation. The relation is between one record and at most one other record. An

example of this relationship is an employee and their organization. One employee

works at one organization. Another example would be that a driver’s license belongs

to only one person.

47

48 Lab 5. SQL II

StudentID Name MajorCode MinorCode

401767594 Michelle Fernandez 1 NULL

678665086 Gilbert Chapman NULL NULL

553725811 Roberta Cook 2 1

886308195 Rene Cross 3 1

103066521 Cameron Kim 4 2

821568627 Mercedes Hall NULL 3

206208438 Kristopher Tran 2 4

341324754 Cassandra Holland 1 NULL

262019426 Alfonso Phelps NULL NULL

622665098 Sammy Burke 2 3

Table 5.1: students

ID Name

1 Math

2 Science

3 Writing

4 Art

Table 5.2: fields

One to Many

This relationship and its inverse must be modeled with at least two tables. The

general approach is to use a unique ID. Note that a relationship that appears one

to one may actually be a one to many relationship. Many people will, therefore, use

the same unique ID approach on one to one relationships too in the case it turns

out to be a one to many relationship. An example of a one to many relationship

would between an department and its employees. The department would receive a

unique ID and then each employee in that department would be tagged with that

ID.

Many to Many

This relationship requires at least three tables. A many to many relationship can

be visualized as two, separate one to many relationships. The records in each of

the two tables receive a unique ID. A third table then serves as a map between IDs

of table to IDs of the other table. An example of a many to many relationship is

doctors and patients. One doctor can have several patients and one patient can

have several doctors.

For the rest of the lab, we will be using the following tables: 5.1, 5.2, 5.3, and

5.4.

Problem 1. Classify the relations between the various records in these ta-

bles: 5.1, 5.2, 5.3, and 5.4.

49

StudentID ClassID Grade

401767594 4 C

401767594 3 B-

678665086 4 NULL

678665086 3 A+

553725811 2 C

678665086 1 NULL

886308195 1 A

103066521 2 C

103066521 3 C-

821568627 4 D

821568627 2 NULL

821568627 1 B

206208438 2 A

206208438 1 C+

341324754 2 D-

341324754 1 NULL

103066521 4 A

262019426 2 B

262019426 3 NULL

622665098 1 A

622665098 2 A-

Table 5.3: grades

ClassID Name

1 Calculus

2 English

3 Pottery

4 History

Table 5.4: classes

Classify each relation as either one to one, one to many, or many to many.

Identify the tables used in each relationship.

Note

There are instances where you would not want a completely normalized database.

Whether to normalize your database depends on your specific needs. Usually,

though, the decision to denormalize a database is a last-resort attempt to

improve performance.

50 Lab 5. SQL II

A B

C

Figure 5.1: An inner joining of tables A, B, and C.

Joining tables

We can use SQL to join two or more tables together for a query. This is a very

powerful tool. SQLite supports three types of standard table joins.

Joining tables is a common practice to collect data from different parts of the

database into a single table. Joins are absolutely essential in a normalized database

since data is split between multiple tables.

Inner Join

This is often the default join operation in SQL. An inner join can be depicted as an

intersection of two or more tables. When performing an inner join on tables, the

result will only be those records that match across all tables.

SELECT students.name, majors.name FROM students JOIN majors ON students.majorcode←↩
=majors.id;

An inner join is equivalent to the following pseudo-loop in Python

for row_s in students:

for row_m in majors:

if predicates(row_s, row_m):

yield columns(row_s, row_m)

Left Outer Join

A left outer join will return all relations from the left table even if they don’t match

any relation on the joined tables. An illustration of a left outer join is given in

figure 5.2.

A Pythonesque loop that illustrates performs a left outer join is

51

students.name majors.name

Michelle Fernandez Math

Roberta Cook Science

Rene Cross Writing

Cameron Kim Art

Kristopher Tran Science

Cassandra Holland Math

Sammy Burke Science

Table 5.5: An inner join of students and majors

A B

C

Figure 5.2: A left outer table join of A with tables B and C.

for row_s in students:

for row_m in majors:

if predicates(row_s, row_m):

yield columns(row_s, row_m)

else:

yield columns(row_s)

The following left outer join will result in the table shown in table 5.6.

SELECT students.name, majors.name FROM students LEFT OUTER JOIN majors ON ←↩
students.majorcode=majors.id;

Cross Join

Essentially a Cartesian product of tables. Care must be taken when using cross join

because of the size of the joined table. A cross join should only be used on small

tables. It matches each relation in one table with every other possible combination

of relations in the joined tables.

52 Lab 5. SQL II

students.name majors.name

Michelle Fernandez Math

Gilbert Chapman None

Roberta Cook Science

Rene Cross Writing

Cameron Kim Art

Mercedes Hall None

Kristopher Tran Science

Cassandra Holland Math

Alfonso Phelps None

Sammy Burke Science

Table 5.6: A left outer join of students and majors

Function Description

MIN() Retrieve the smallest numeric value of a column

MAX() Retrieve the largest numeric value of a column

SUM() Sum the numeric values of a column

AVG() Retrieve the average numeric value of the column

COUNT() Retrieve the total number of matching records in a column

Table 5.7: SQL aggregation functions

Advanced Selections

Aggregate functions are useful for summarizing the data in a column. The functions

are

We can count the number of students by executing the following SQL statement.

SELECT COUNT(*) FROM students;

Ordering and Grouping Relations

The ORDER BY keyword can be used to sort the result set by columns. We can sort in

ascending order or descending order.

SELECT name FROM students ORDER BY name ASC;

SELECT name FROM students ORDER BY name DESC;

Another useful SQL keyword is the GROUP BY keyword. It is used along with an

aggregating function to group the result set by columns.

SELECT grade, COUNT(studentid) FROM grades GROUP BY grade;

The result set is given in table 5.8.

53

grade COUNT(studentid)

None 5

A 4

A+ 1

A- 1

B 2

B- 1

C 3

C+ 1

C- 1

D 1

D- 1

Table 5.8: Grouping of students by grade.

Problem 2. Write a SQL query that will count how many students belong

to each major, including students that don’t have a major. Sort your results

in ascending order by name. Your result set should be table 5.9

None 3

Art 1

Math 2

Science 3

Writing 1

Table 5.9: Result set

Another important keyword is the HAVING keyword. This is necessary because

the WHERE clause does not support aggregate functions. A HAVING clause requires a

GROUP BY clause. The following will not work.

SELECT grade FROM grades GROUP BY grade WHERE COUNT(*)=1;

Since COUNT is an aggregating function, the following is required.

SELECT grade FROM grades GROUP BY grade HAVING COUNT(*)=1;

This SQL query returns all the grades that occur only once in the table. A simple

why to remember the difference is WHERE operates on individual records and HAVING

operates on groups of records.

Problem 3. Select all the students who have received grades (non-null grades)

in more than two classes. How many grades did he receive?

54 Lab 5. SQL II

Case Expression

A case expression allows you to temporarily modify records from a select operation.

There are two forms of the case expression; simple and searched. The simple form

of the expression is a match and replace on a specified column. A simple case

expression is demonstrated below.

SELECT name,

CASE majorcode

WHEN 1 THEN 'Math'
WHEN 2 THEN 'Science'
WHEN 3 THEN 'Writing'
WHEN 4 THEN 'Art'
ELSE 'Undeclared'
END AS major

FROM students;

A searched case expression using a boolean expression for the WHEN clauses.

SELECT name,

CASE

WHEN majorcode IS NULL THEN 'Undeclared'
ELSE majorcode

END AS major,

CASE

WHEN minorcode IS NULL THEN 'Undeclared'
ELSE minorcode

END AS minor

FROM students;

Problem 4. Find the overall GPA of all the students in the school. Use a

regular 4.0 scale (A=4.0, B=3.0, C=2.0, D=1.0). Any pluses or minuses are

dropped so an A- becomes and A.

Your result set should be one column and one row with average of all

GPAs of all the students taking classes. Your solution should return a single

floating point number.

Use the ROUND() function in SQL to round your result to the nearest hun-

dredth.

Problem 5. The SQL keyword, LIKE, allows us to match patterns in a col-

umn. For example,

SELECT name, studentid FROM students WHERE studentid LIKE '\%4';

will return all the students that have a student ID that ends with the digit

4.

Write a SQL statement that will find all students with a last name that

55

begins with the letter ‘C’ and return their names and majors. Your returned

records should be

Gilbert Chapman None

Roberta Cook Science

Rene Cross Writing

56 Lab 5. SQL II

Lab 6

Intro to pandas I

Lab Objective: Become acquainted with the data structures and tools that pandas

offers for data analysis.

In volumes 1 and 2, we solved data problems primarily using NumPy and SciPy.

While extremely flexible and useful tools, these libraries lack some of the high-level

data-analytic abstractions present in other popular data packages like R and Stata.

We now turn our attention to pandas, a Python library that is more specifically

built for data analysis.

Data Structures in pandas

Just as NumPy is built on the ndarray data structure suited for efficient scientific and

numerical computation, pandas is centered around a handful of core data structures

custom built for data analysis. These data structures include the Series, DataFrame,

and Panel, which correspond roughly to one, two, and three-dimensional arrays. We

will explore the first two data structures in some detail. The interested reader can

learn more about the Panel data structure (the least-used one in pandas) in the

online documentation.

Series

The Series is a one-dimensional array with labeled entries. The values of the array

may be any data type, including integers, strings, or general Python objects. Fur-

ther, the array need not be homogeneous. That is, it can hold values of different

data types. Together, the array values are referred to as the data of the Series. The

labels must consist of hashable types, and are most commonly integers or strings.

Together, the labels are referred to as the index of the Series. Thus, a Series con-

sists of data and an index. The most basic way to initialize such an object is as

follows:

>>> import pandas as pd

>>> s = pd.Series(data, index=index)

57

58 Lab 6. Intro to pandas I

We don’t need to explicitly define an index. The default is np.arange(len(data)). For

example, we can create a Series containing the integers from 9 to 0:

>>> s1 = pd.Series(range(9, -1, -1))

>>> s1.values #the data

array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

>>> s1.index #the labels

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')
>>> s1 #left column is index, right column is data

0 9

1 8

2 7

3 6

4 5

5 4

6 3

7 2

8 1

9 0

dtype: int64

Here is an example where we create customized labels:

>>> import numpy as np

>>> data = np.random.randn(3)

>>> index = ['first', 'second', 'third']
>>> s2 = pd.Series(data, index=index)

>>> s2

first 1.661255

second -0.033570

third -2.185991

dtype: float64

We can create a Series having constant values in the following manner:

>>> val = 4 #desired constant value of Series

>>> n = 6 #desired length of Series

>>> s3 = pd.Series(val, index=range(n))

>>> s3

0 4

1 4

2 4

3 4

4 4

5 4

dtype: int64

It is also possible to use a Python dictionary when creating a Series:

>>> d = {'e1': 93, 'e2': 95, 'e3': 87, 'e4': 82, 'e5': 94}

>>> s4 = pd.Series(d)

>>> s4

e1 93

e2 95

e3 87

e4 82

e5 94

dtype: int64

59

Note that we didn’t need to specify the index; the keys of the dictionary are used

as the index for the Series. There are many more ways to create Series objects.

For a more complete discussion of how to create Series objects, see the online

documentation.

Problem 1. Create the following pandas Series.

• Constant array with value -3, length 5. Labels should be the first five

positive even integers.

• Data is given by the dictionary {'Bill': 31, 'Sarah': 28, 'Jane': 34, '

Joe': 26}.

DataFrame

The DataFrame data structure is a two-dimensional generalization of the Series. It

can be viewed as a tabular structure with labeled rows and columns. The row labels

are collectively called the index, and the column labels are collectively called the

columns. An individual column in a DataFrame object is a Series.

There are many ways to initialize a DataFrame. In the following, we build a

DataFrame out of a dictionary of Series.

>>> x = pd.Series(np.random.randn(4), ['a', 'b', 'c', 'd'])
>>> y = pd.Series(np.random.randn(5), ['a', 'b', 'd', 'e', 'f'])
>>> d = {1: x, 2: y}

>>> df1 = pd.DataFrame(d)

>>> df1

1 2

a -0.924259 -0.708301

b 0.767422 -2.214516

c 0.399212 NaN

d 0.130365 -2.352364

e NaN 0.789419

f NaN -0.859482

Note that the index of this DataFrame is the union of the index of Series x and that

of Series y. The columns are given by the keys of the dictionary d. Since x doesn’t

have a label e, the value in row e, column 1 is NaN. This same reasoning explains the

other missing values as well. Note that if we take the first column of the DataFrame

and drop the missing values, we recover the Series x:

>>> x == df1[1].dropna()

a True

b True

c True

d True

dtype: bool

60 Lab 6. Intro to pandas I

Warning

A Pandas DataFrame cannot be sliced the same way a NumPy array could.

Notice how we just used df1[1] to access the first column of the the DataFrame

df1. We will discuss this in more detail later on.

We can also initialize a DataFrame using a NumPy array, creating custom row and

column labels:

>>> data = np.random.random((3, 4))

>>> pd.DataFrame(data, index=['A', 'B', 'C'], columns=range(1, 5))

1 2 3 4

A 0.065646 0.968593 0.593394 0.750110

B 0.803829 0.662237 0.200592 0.137713

C 0.288801 0.956662 0.817915 0.951016

3 rows 4 columns

As with Series, if we don’t specify the index or columns, the default is range(n),

where n is either the number of rows or columns.

It is also possible to create multi-indexed arrays, for example:

>>> grade=['eighth', 'ninth', 'tenth']
>>> subject=['math', 'science', 'english']
>>> myindex = pd.MultiIndex.from_product([grade, subject], names=['grade', '←↩

subject'])
>>> myseries = pd.Series(np.random.randn(9), index=myindex)

>>> myseries

grade subject

eighth math 1.706644

science -0.899587

english -1.009832

ninth math 2.096838

science 1.884932

english 0.413266

tenth math -0.924962

science -0.851689

english 1.053329

dtype: float64

Multi-indexing is visually convenient, but not strictly necessary for most ap-

plications. The interested reader is invited to explore the documentation to learn

more.

Data I/O

Being able to import and export data is a fundamental skill in data science. Unfor-

tunately, with the multitude of data formats and conventions out there, importing

data can often be a tricky task. The pandas library seeks to reduce some of the dif-

ficulty by providing file readers for various types of formats, including CSV, Excel,

HDF5, SQL, JSON, HTML, and pickle files.

The CSV (comma separated values) format is a simple way of storing tabular

data in plain text. Because CSV files are one of the most popular file formats for

61

exchanging data, we will explore the read_csv function in more detail. To learn to

read other types of file formats, see the online pandas documentation. To read a

CSV data file into a DataFrame, call the read_csv function with the path to the CSV

file, along with the appropriate keyword arguments. Below we list some of the most

important keyword arguments:

• delimiter: This argument specifies the character that separates data fields,

often a comma or a whitespace character.

• header: The row number (starting at 0) in the CSV file that contains the

column names.

• index_col: If you want to use one of the columns in the CSV file as the index

for the DataFrame, set this argument to the desired column number.

• skiprows: If an integer n, skip the first n rows of the file, and then start reading

in the data. If a list of integers, skip the specified rows.

• names: If the CSV file does not contain the column names, or you wish to use

other column names, specify them in a list assigned to this argument.

There are several other keyword arguments, but this should be enough to get you

started.

When you need to save your data, pandas allows you to write to several different

file formats. A typical example is the to_csv function method attached to Series and

DataFrame objects, which writes the data to a CSV file. Keyword arguments allow

you to specify the separator character, omit writing the columns names or index,

and other options. The code below demonstrates its typical usage:

>>> df.to_csv("my_df.csv")

Viewing and Accessing Data

Once we have our data ready to go in pandas, how can we interact with it? In this

section we will explore some elementary access, plotting, and querying techniques

that enable us to maneuver through and gain insight into our data.

Basic Data Access

Some of the basic slicing paradigms in NumPy carry over to pandas. For example,

we can slice a Series using the usual syntax:

>>> s = pd.Series(np.random.randn(5))

>>> s[1:3]

1 3.188112

2 0.080191

dtype: float64

Notice that both the data and the index are sliced in this manner.

Likewise, we can slice the rows of a DataFrame much as with a NumPy array:

62 Lab 6. Intro to pandas I

>>> df = pd.DataFrame(np.random.randn(4, 2), index=['a', 'b', 'c', 'd'], columns ←↩
= ['I', 'II'])

>>> df[:2]

I II

a 0.758867 1.231330

b 0.402484 -0.955039

[2 rows x 2 columns]

More generally, we can select subsets of the data using the .iloc and .loc meth-

ods. The .loc method selects rows and columns based on their labels, while the .iloc

method selects them based on their integer position. Accessing Series and DataFrame

objects using these indexing operations is more efficient than using bracket indexing

because the bracket indexing has to check many cases before it can determine how

to slice the data structure. By using loc/iloc explicitly, you bypass the extra checks.

>>> # select rows a and c, column II

>>> df.loc[['a','c'], 'II']

a 1.231330

c 0.556121

Name: II, dtype: float64

>>> # select last two rows, first column

>>> df.iloc[-2:, 0]

c -0.171938

d -0.814336

Name: I, dtype: float64

Finally, a column of a DataFrame may be accessed using simple square brackets and

the name of the column:

>>> # get second column of df

>>> df['II']

a 1.231330

b -0.955039

c 0.556121

d 0.173165

Name: II, dtype: float64

All of these techniques for getting subsets of the data may also be used to set

subsets of the data:

>>> # set second columns to zeros

>>> df['II'] = 0

>>> df['II']

a 0

b 0

c 0

d 0

Name: II, dtype: int64

63

Plotting

Plotting is often a much more effective way to view and gain understanding of a

dataset than simply viewing the raw numbers. Fortunately, pandas interfaces well

with matplotlib, allowing relatively painless data visualization.

We start by plotting a Series. Doing so is easy, as the Series object is equipped

with its own plot function. Let’s start with visualizing a simple random walk. By

way of background, a random walk is a stochastic process used to model a non-

deterministic path through some space. It is a useful construct in many fields and

can be used to explain things like the motion of a molecule as it travels through

a liquid to modeling the fluctuations of stock prices. Here we will simulate a one-

dimensional symmetric random walk on the integers, which can be described as

follows.

1. Start at 0.

2. Flip a fair coin.

3. If heads, move one unit to the right. Otherwise, move one unit to the left.

4. Go to Step 2.

How can we simulate this random walk efficiently? Note that the walk is really

characterized by the outcomes of the coin flip. If we represent heads by the number

1 and tails by −1, then our position at a given moment is just the cumulative sum

of all previous outcomes. Below, we simulate a sequence of coin flips, build the

resulting random walk, and plot the outcome.

>>> import matplotlib.pyplot as plt

>>> N = 1000 # length of random walk

>>> s = np.zeros(N)

>>> s[1:] = np.random.binomial(1, .5, size=(N-1,))*2-1 #coin flips

>>> s = pd.Series(s)

>>> s = s.cumsum() # random walk

>>> s.plot()

>>> plt.ylim([-50, 50])

>>> plt.show()

>>> plt.close()

The random walk is shown in Figure 6.1.

Problem 2. Create five random walks of length 100, and plot them to-

gether.

Next, create a “biased” random walk by changing the coin flip probability

of head from 0.5 to 0.51. Plot this biased walk with lengths 100, 10000, and

then 100000. Notice the definite trend that emerges. Your results should be

comparable to those in Figure 6.2.

Using DataFrames, one can also plot one column against another.

64 Lab 6. Intro to pandas I

Figure 6.1: Random walk of length 1000.

Figure 6.2: Biased random walk of length 100 (above) and 10000 (below).

>>> xvals = pd.Series(np.sqrt(np.arange(1000)))

>>> yvals = pd.Series(np.random.randn(1000).cumsum())

>>> df = pd.DataFrame({'xvals': xvals, 'yvals': yvals})

>>> df.plot(x='xvals', y='yvals') # specify x and y values

>>> plt.show()

>>> plt.close()

The result is displayed in Figure 6.3.

A variety of other types of plots are possible. One of the more useful plots

when trying to estimate or visualize the distribution of data is a histogram. The

code listed below demonstrates how to generate a histogram for each column in a

DataFrame, with the result shown in Figure 6.4.

65

Figure 6.3: Graph generated when one coordinate is taken from the xvals column

and the other from the yvals column.

Figure 6.4: Histogram of two columns of a DataFrame.

>>> col1 = pd.Series(np.random.randn(1000)) #normal distribution

>>> col2 = pd.Series(np.random.gamma(5, size=1000)) #gamma distribution

>>> df = pd.DataFrame({'normal': col1, 'gamma': col2})

>>> df.hist()

>>> plt.show()

>>> plt.close()

66 Lab 6. Intro to pandas I

SQL Operations in pandas

The DataFrame, being a tabular data structure, bears an obvious resemblance to a

typical relational database table. SQL is the standard for working with relational

databases, and in this section we will explore how pandas accomplishes some of the

same tasks as SQL. The SQL-like functionality of pandas is one of its biggest advan-

tages, since it can eliminate the need to switch between programming languages for

different tasks. Within pandas we can handle both the querying and data analysis.

For the following examples, we will use this data:

>>> #build toy data for SQL operations

>>> name = ['Bill', 'Alice', 'Joe', 'Jenny', 'Ted', 'Taylor', 'Tracy', 'Morgan', ←↩
'Liz']

>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']
>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]

>>> rank = ['Sp', 'Se', 'Fr', 'Se', 'Sp', 'J', 'J', 'J', 'Se']
>>> ID = range(9)

>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']
>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]

>>> mathID = [0, 1, 5, 6, 3]

>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]

>>> major = ['y', 'n', 'y', 'n', 'n']
>>> studentInfo = pd.DataFrame({'ID': ID, 'Name': name, 'Sex': sex, 'Age': age, '←↩

Class': rank})

>>> otherInfo = pd.DataFrame({'ID': ID, 'GPA': GPA, 'Financial_Aid': aid})

>>> mathInfo = pd.DataFrame({'ID': mathID, 'Grade': mathGd, 'Math_Major': major})

Before querying our data, it is important to know some of its basic properties,

such as number of columns, number of rows, and the datatypes of the columns.

This can be done by simply calling the info method on the desired DataFrame:

>>> mathInfo.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 0 to 4

Data columns (total 3 columns):

Grade 5 non-null float64

ID 5 non-null int64

Math_Major 5 non-null object

dtypes: float64(1), int64(1), object(1)

Now let’s look at the pandas equivalent of some SQL SELECT statements.

>>> # SELECT ID, Age FROM studentInfo

>>> studentInfo[['ID', 'Age']]

>>> # SELECT ID, GPA FROM otherInfo WHERE Financial_Aid = 'y'
>>> otherInfo[otherInfo['Financial_Aid']=='y'][['ID', 'GPA']]

>>> # SELECT Math_Major, COUNT(*) FROM mathInfo GROUP BY Math_Major

>>> print mathInfo.groupby('Math_Major').size()

Problem 3. The example above shows how to implement a simple WHERE

condition, and it is easy to have a more complex expression. Simply enclose

67

each condition by parentheses, and use the standard boolean operators &

(AND), | (OR), and ~ (NOT) to connect the conditions appropriately. Use

pandas to execute the following query:

SELECT ID, Name from studentInfo WHERE Age > 19 AND Sex = 'M'

Next, let’s look at JOIN statements. In pandas, this is done with the merge

function, which takes as arguments the two DataFrame objects to join, as well as

keyword arguments specifying the column on which to join, along with the type

(left, right, inner, outer).

>>> # SELECT * FROM studentInfo INNER JOIN mathInfo ON studentInfo.ID = mathInfo.←↩
ID

>>> pd.merge(studentInfo, mathInfo, on='ID') # INNER JOIN is the default

Age Class ID Name Sex Grade Math_Major

0 20 Sp 0 Bill M 4.0 y

1 21 Se 1 Alice F 3.0 n

2 22 Se 3 Jenny F 4.0 n

3 20 J 5 Taylor F 3.5 y

4 20 J 6 Tracy M 3.0 n

[5 rows x 7 columns]

>>> # SELECT GPA, Grade FROM otherInfo FULL OUTER JOIN mathInfo ON otherInfo.ID =←↩
mathInfo.ID

>>> pd.merge(otherInfo, mathInfo, on='ID', how='outer')[['GPA', 'Grade']]
GPA Grade

0 3.8 4.0

1 3.5 3.0

2 3.0 NaN

3 3.9 4.0

4 2.8 NaN

5 2.9 3.5

6 3.8 3.0

7 3.4 NaN

8 3.7 NaN

[9 rows x 2 columns]

Problem 4. Using a join operation, create a DataFrame containing the ID,

age, and GPA of all male individuals. You ought to be able to accomplish

this in one line of code.

Be aware that other types of SQL-like operations are also possible, such as

UNION. When you find yourself unsure of how to carry out a more involved SQL-

like operation, the online pandas documentation will be of great service.

Analyzing Data

Although pandas does not provide built-in support for heavy-duty statistical anal-

ysis of data, there are nevertheless many features and functions that facilitate basic

68 Lab 6. Intro to pandas I

data manipulation and computation, even when the data is in a somewhat messy

state. We will now explore some of these features.

Basic Data Manipulation

Because the primary pandas data structures are subclasses of the ndarray, they are

valid input to most NumPy functions, and can often be treated simply as NumPy

arrays. For example, basic vectorized operations work just fine:

>>> x = pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd'])
>>> y = pd.Series(np.random.randn(5), index=['a', 'b', 'd', 'e', 'f'])
>>> x**2

a 1.710289

b 0.157482

c 0.540136

d 0.202580

dtype: float64

>>> z = x + y

>>> z

a 0.123877

b 0.278435

c NaN

d -1.318713

e NaN

f NaN

dtype: float64

>>> np.log(z)

a -2.088469

b -1.278570

c NaN

d NaN

e NaN

f NaN

dtype: float64

Notice that pandas automatically aligns the indexes when adding two Series (or

DataFrames), so that the the index of the output is simply the union of the indexes of

the two inputs. The default missing value NaN is given for labels that are not shared

by both inputs.

It may also be useful to transpose DataFrames, re-order the columns or rows, or

sort according to a given column. Here we demonstrate these capabilities:

>>> df = pd.DataFrame(np.random.randn(4,2), index=['a', 'b', 'c', 'd'], columns=[←↩
'I', 'II'])

>>> df

I II

a -0.154878 -1.097156

b -0.948226 0.585780

c 0.433197 -0.493048

d -0.168612 0.999194

[4 rows x 2 columns]

>>> df.transpose()

a b c d

I -0.154878 -0.948226 0.433197 -0.168612

69

II -1.097156 0.585780 -0.493048 0.999194

[2 rows x 4 columns]

>>> # switch order of columns, keep only rows 'a' and 'c'
>>> df.reindex(index=['a', 'c'], columns=['II', 'I'])

II I

a -1.097156 -0.154878

c -0.493048 0.433197

[2 rows x 2 columns]

>>> # sort descending according to column 'II'
>>> df.sort(columns='II', ascending=False)

I II

d -0.168612 0.999194

b -0.948226 0.585780

c 0.433197 -0.493048

a -0.154878 -1.097156

[4 rows x 2 columns]

Basic Statistical Functions

The pandas library allows us to easily calculate basic summary statistics of our

data, useful when we want a quick description of the data. The describe function

outputs several such summary statistics for each column in a DataFrame:

>>> df.describe()

I II

count 4.000000 4.000000

mean -0.209630 -0.001308

std 0.566696 0.964083

min -0.948226 -1.097156

25% -0.363516 -0.644075

50% -0.161745 0.046366

75% -0.007859 0.689133

max 0.433197 0.999194

[8 rows x 2 columns]

Functions for calculating means and variances, the covariance and correlation

matrices, and other basic statistics are also available. Below, we calculate the means

of each row, as well as the covariance matrix:

>>> df.mean(axis=1)

a -0.626017

b -0.181223

c -0.029925

d 0.415291

dtype: float64

>>> df.cov()

I II

I 0.321144 -0.256229

II -0.256229 0.929456

70 Lab 6. Intro to pandas I

[2 rows x 2 columns]

Dealing with Missing Data

Missing data is a ubiquitous problem in data science. Fortunately, pandas is par-

ticularly well-suited to handling missing and anomalous data. As we have already

seen, the pandas default for a missing value is NaN. In basic arithmetic operations,

if one of the operands is NaN, then the output is also NaN. The following example

illustrates this concept:

>>> x = pd.Series(np.arange(5))

>>> y = pd.Series(np.random.randn(5))

>>> x.iloc[3] = np.nan

>>> x + y

0 0.731521

1 0.623651

2 2.396344

3 NaN

4 3.351182

dtype: float64

If we are not interested in the missing values, we can simply drop them from the

data altogether:

>>> (x + y).dropna()

0 0.731521

1 0.623651

2 2.396344

4 3.351182

dtype: float64

This is not always the desired behavior, however. It may well be the case that

missing data actually corresponds to some default value, such as zero. In this case,

we can replace all instances of NaN with a specified value:

>>> # fill missing data with 0, add

>>> x.fillna(0) + y

0 0.731521

1 0.623651

2 2.396344

3 1.829400

4 3.351182

dtype: float64

Other functions, such as sum() and mean() treat NaN as zero by default. When

dealing with missing data, make sure you are aware of the behavior of the pandas

functions you are using.

Problem 5. Using the dataset contained in the file crime_data.txt and the

techniques learned in this lab, use pandas to complete the following.

71

• Load the data into a pandas DataFrame, using the column names in the

file and the column titled “Year” as the index. Make sure to skip lines

that don’t contain data.

• Insert a new column into the data frame that contains the crime rate

by year (the ratio of “Total” column to the “Population” column).

• Plot the crime rate as a function of the year.

• List the 5 years with the highest crime rate in descending order.

• Calculate the average number of total crimes as well as burglary crimes

between 1960 and 2012.

• Find the years for which the total number of crimes was below average,

but the number of burglaries was above average.

• Plot the number of murders as a function of the population.

• Select the Population, Violent, and Robbery columns for all years in the

1980s, and save this smaller data frame to a CSV file crime_subset.txt.

72 Lab 6. Intro to pandas I

Lab 7

Intro to pandas II

In this lab, we explore in further detail two specific areas where pandas can be a

very useful tool: analyzing sequential data, and working with large datasets that

can’t be stored entirely in memory.

Warning

This lab assumes pandas 0.14.0. Errors may occur if you have an earlier

version. You can check the version of pandas you are running by the following:

>>> import pandas as pd

>>> pd.__version__

'0.14.0'

Time Series Analysis

A time series is a particular type of data set that consists of a sequence of mea-

surements or observations generated at successive points in time. Examples include

the yearly average temperate of a city, or the price of a given stock measured daily.

Working With Large Datasets

In the real world, a data scientist is often confronted with large datasets that can’t

be held in memory all at once. There are various solutions to this problem; in this

section, we will explore how pandas uses the HDF5 file format to allow us to work

with datasets on disk.

HDF5, which stands for “Hierarchical Data Format”, is a data storage system

especially suited for large numerical datasets. Rich and efficient software libraries

have been developed over the years to enable fast read and write operations, which

make HDF5 a competitive option for working with large datasets in many applica-

tions. The Python library pytables is one such library, and the HDF5 capabilities

in pandas are built directly on top of pytables.

73

74 Lab 7. Intro to pandas II

We have two primary learning goals: how to get our data into the proper HDF5

format, and how to intelligently work with the data once it’s tidied up. Let’s dive

in.

Writing HDF5 Data

The primary way we will interact with HDF5 data goes through the HDFStore object,

which behaves somewhat like a dictionary. To begin, let’s instantiate such an object,

and write data to it. Make sure to execute the code snippets throughout to ensure

that everything works as expected on your machine.

>>> # we will create an HDFStore with the filename test_store.h5

>>> my_store = pd.HDFStore('test_store.h5')
>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

Empty

The file 'test_store.h5' has just been created in your working directory, although it

contains nothing as yet. Write some pandas data to the store:

>>> # instantiate data, write to store

>>> ts = pd.Series(index=['A', 'B', 'C', 'D'], data = np.random.randn(4))

>>> df = pd.DataFrame(index=range(6), columns=['a','b'], data=np.random.random←↩
((6,2)))

>>> my_store['ts'] = ts

>>> my_store['df'] = df

>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

/df frame (shape->[6,2])

/ts series (shape->[4])

Note the dict-like syntax for writing data to the store. We now see that the store

contains two objects, which can easily be retrieved in the following manner:

>>> # retrieve the df from the store, check it is the same

>>> store_df = my_store['df']
>>> (df == store_df).all()

a True

b True

dtype: bool

Removing an object that you have written to the store can be accomplished as

follows (although note that removing the object doesn’t necessarily free up space

on the hard disk, so the file size may not decrease):

>>> # let's remove the series ts

>>> del my_store['ts'] # or my_store.remove('ts')
>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

/df frame (shape->[6,2])

75

The read and write operations that we have explored so far work just fine for

small objects that can fit entirely in memory, but the story is different when it comes

to writing large datasets to an HDF5 file. Suppose we have a CSV file containing

the large dataset that we want to work with. One basic approach to storing this

data in HDF5 format is to read and write it by chunks, that is, move the data into

an HDF5 store a few lines at a time. This ensures that we never have to read too

much of the data into memory at once.

The read_csv function in pandas allows for reading a file by chunks of rows. We

simply need to specify the keyword argument chunksize, which gives the number of

rows of the file to read in each time. Most other pandas data readers have a similar

option for loading data by chunks. It is also important to specify the correct data

types of each column when reading in the chunks of data. This will ensure that a

consistent data type is used when writing to the HDF5 store. To do this, create

a dict that maps each column name to its correct data type. Columns containing

strings should have the object datatype, and columns containing numerical data

may be ints or floats. Any column that contains date data should NOT be included

in the dictionary, but rather should be passed as the parse_dates keyword argument

(a list of the column names containing dates).

To iteratively write data to a single object in an HDF5 store, we must use the

append method. This will store the data in a particular format called a table, an

on-disk data structure geared toward efficient querying of the rows. There are a few

parameters that we must tune in order to write the data successfully.

• key: This is the target object in the HDF5 store to which we want to write.

• value: This is the actual chunk of data (such as a DataFrame) that we want to

append to the store.

• data_columns: A list of the column names of the incoming data that should

be indexed. You should include all columns that you will use in subsequent

queries of the data. For example, if my dataset has a column labeled ‘A’,

and I anticipate wanting to select all rows where the value in column ‘A’ is

greater than, say, 0, then it is imperative that data_columns includes ‘A’. Try

to avoid including columns that aren’t needed in the queries, as performance

can decrease with a larger number of indexed columns. This argument only

needs to be specified for the first chunk to be written.

• min_itemsize: This is an int that specifies the maximum length of a string

found in the dataset. If you are unsure of the exact length of the longest

string, try setting this to a high default value (say 100). If you attempt to

write data containing a string whose length exceeds min_itemsize, an error is

raised. This argument is also only required for the first chunk.

• index: This argument is a boolean flag that indicates whether the data should

be indexed as it is written. By setting index=False, the data is written much

faster.

In the code below, we create a CSV file containing toy data, then write it by chunks

to our HDF5 store.

76 Lab 7. Intro to pandas II

>>> # first create the toy CSV file

>>> n_rows = 10000

>>> n_cols = 3

>>> csv_path = 'toy_data.csv'
>>> csv_file = open(csv_path, 'w')
>>> csv_file.write("A B C\n")

>>> for i in xrange(n_rows):

>>> for num in np.random.randn(3):

>>> csv_file.write(' ' + str(num))

>>> csv_file.write('\n')
>>> csv_file.close()

>>> # now iteratively write the data to the store

>>> n_chunk = 1000

>>> col_types = {'A':np.float, 'B':np.float, 'C':np.float}
>>> reader = pd.read_csv(csv_path, sep=' ', dtype=col_types, index_col=False, ←↩

chunksize=n_chunk, skipinitialspace=True)

>>> first = True # a flag for the very first chunk

>>> data_cols=['B', 'C'] # queries involving cols B and C will be allowed

>>> for chunk in reader:

>>> if first:

>>> my_store.append('toy_data', chunk, data_columns=data_cols, index=←↩
False)

>>> first = False

>>> else:

>>> my_store.append('toy_data', chunk, index=False)

>>> my_store

<class 'pandas.io.pytables.HDFStore'>
File path: test_store.h5

/df frame (shape->[6,2])

/toy_data frame_table (typ->appendable,nrows->10000,ncols->3,indexers←↩
->[index],dc->[B,C])

If an error of any type occurs when writing your data, and you need to start over, it

is necessary to remove the previously written data, since the append function doesn’t

overwrite existing data.

Now that the data is in the HDF5 store, we should index the table, which can

speed up query operations. This is done as follows:

>>> my_store.create_table_index('toy_data', optlevel=9, kind='full')

Obviously the toy data in this example is small enough to fit in memory, but it

illustrates a basic approach to moving large datasets into a HDF5 store.

Problem 1. Write the data contained in the file campaign.csv to an HDF5

store using the chunking approach. We recommend setting the chunksize

argument to 50,000. There will be just over 100 chunks for this chunk size,

so you can track your progress by printing out a counter, if you wish. The

whole writing process will likely take a few minutes.

The file campaign_format.txt contains information about the dataset, in-

cluding the column names and descriptions. Consult this file and note which,

if any, columns contain date information. Use this information to appropri-

77

ately set the parse_dates argument in the read_csv function. This argument

should be a list of the column names that include date information. Note

also that some of the columns contain strings, so remember the min_itemsize

argument. Finally, you will be analyzing this data in the remainder of the

lab, so glance over the problems below to determine which columns need to

be indexed.

Once you have finished writing to the store, create a table index for the

data, just as shown in the example above.

Working With On-Disk Arrays

Now that we have the data in a HDF5 table, how do we work with it? The key here

is to only read in subsets of the data, since trying to read the entire dataset at once

may result in swamping the memory and crashing the system. The select method

allows us to do just this. It takes two basic arguments: first, the name of the table

in the store that we want to query, and second, a query statement. Remember, the

query statement may not reference columns that weren’t included in data_columns.

>>> # this query is OK

>>> my_store.select('toy_data', where = ["'B' < 0", "'C' > 0"])

>>> # this query is NOT OK

>>> my_store.select('toy_data', where = ["'A' < .5"])

Note that each logical statement in the where list is combined with a logical AND.

Let’s look at some simple examples with our campaign dataset. We assume that

the data is in a HDF5 store called store. Follow along to make sure you get the

same results.

>>> # get a list of the candidates; result should be 14 candidates

>>> cands = store.select_column('campaign', 'cand_nm').unique()

>>> # find number of contributions from UT

>>> n_UT = len(store.select('campaign',where = ["'contbr_st' == 'UT'", "columns='←↩
contbr_st'"]))

>>> n_UT

50462

>>> # find number of UT contributions to Romney

>>> n_rom_UT = len(store.select('campaign', where = ["'contbr_st' == 'UT'", "'←↩
cand_nm'=='Romney, Mitt'", "columns='contbr_st'"]))

>>> n_rom_UT

26962

>>> # proportion of UT contributions that went to Romney

>>> np.float(n_rom_UT)/n_UT

0.534303039911

78 Lab 7. Intro to pandas II

Problem 2. How many contributors in California gave to Obama? To Rom-

ney?

It is also possible to execute more complicated queries involving grouping oper-

ations, although some care is required. Consider the following question: how many

contributions came from each state, and what is the average contribution from each

state? To answer this question, we need to aggregate information grouped by each

state. If we could hold the data in memory, we could use a simply groupby operation,

but since our data resides on disk, the solution is a bit more involved. Fortunately,

the 'contbr_st' column alone is small enough to load into memory, so we do that.

We can then utilize the Series method value_counts, which counts the number of

occurrences of each distinct value in the column. In this way, we obtain a Series

indexed by the states, and containing the number of contributions from each state.

>>> # load in the state column, then calculate the counts

>>> states = store.select_column('campaign','contbr_st')
>>> states = states.value_counts()

Next, we want to iterate through each state, and calculate the mean contribution.

>>> st_contb = []

>>> for state in states.index:

>>> grp = store.select('campaign', where=["'contbr_st'=\"{}\"".format(state),←↩
"columns='contb_receipt_amt'"])

>>> st_contb.append(grp['contb_receipt_amt'].mean())

To tidy up our results, we create a DataFrame indexed by the state, containing the

number of contributions and average contribution. Then we plot top results.

>>> state_info = pd.DataFrame({'Count':states, 'Avg Contb':st_contb})
>>> state_info.sort(columns='Count', ascending=False, inplace=True)

>>> plt.subplot(211)

>>> state_info['Count'][:10].plot(kind='bar')
>>> plt.subplot(212)

>>> state_info['Avg Contb'][:10].plot(kind='bar')
>>> plt.show()

Results are shown in Figure 7.1

Problem 3. Calculate the total net contributions to each candidate, and

plot the results in a bar graph. Your result should match Figure 7.2.

Problem 4. Calculate the frequency of the 20 most common occupations of

contributors in the dataset. Also calculate the average positive contribution

79

C
A

N
Y

T
X FL IL V
A

M
A P
A

W
A

M
D

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

C
A

N
Y

T
X FL IL V
A

M
A P
A

W
A

M
D

0

100

200

300

400

500

Figure 7.1: Top 10 contributing states (top), and their average contributions (bot-

tom).

0 1 2 3 4 5 6
1e8

Bachmann, Michele

Romney, Mitt

Obama, Barack

Roemer, Charles E. 'Buddy' III

Pawlenty, Timothy

Johnson, Gary Earl

Paul, Ron

Santorum, Rick

Cain, Herman

Gingrich, Newt

McCotter, Thaddeus G

Huntsman, Jon

Perry, Rick

Stein, Jill

Figure 7.2: Total net contributions to each candidate.

80 Lab 7. Intro to pandas II

0 200000 400000 600000 800000 1000000 1200000 1400000

RETIRED
ATTORNEY

HOMEMAKER
INFORMATION REQUESTED

PHYSICIAN
INFORMATION REQUESTED PER BEST EFFORTS

TEACHER
PROFESSOR

CONSULTANT
ENGINEER

NOT EMPLOYED
LAWYER

MANAGER
SALES

SELF-EMPLOYED
WRITER

PRESIDENT
NONE

STUDENT
OWNER

0 100 200 300 400 500 600

RETIRED
ATTORNEY

HOMEMAKER
INFORMATION REQUESTED

PHYSICIAN
INFORMATION REQUESTED PER BEST EFFORTS

TEACHER
PROFESSOR

CONSULTANT
ENGINEER

NOT EMPLOYED
LAWYER

MANAGER
SALES

SELF-EMPLOYED
WRITER

PRESIDENT
NONE

STUDENT
OWNER

Figure 7.3: Top 20 occupations of contributors (above) and average contribution of

each occupation (below).

amount for each of these 20 occupations. Plot the results in two bar graphs.

You results should match Figure 7.3.

What if you are interested in the contributions to a candidate as a function of

time? Let’s first aim to create a DataFrame containing the contribution amount and

date for all contributions going to Ron Paul.

>>> cand = 'Paul, Ron'
>>> cand_contb = store.select('campaign', where=["'cand_nm'==\"{}\"".format(cand)←↩

])[['contb_receipt_amt', 'contb_receipt_dt']]

Next, we need to group by date, and apply the sum function to add up contributions

for each particular date. This can be done with the groupby function as follows:

>>> contb = cand_contb.groupby(by='contb_receipt_dt').sum()

Plotting this time series yields Figure 7.4.

81

Mar 2
008

Sep 2008

Mar 2
009

Sep 2009

Mar 2
010

Sep 2010

Mar 2
011

Sep 2011

Mar 2
012

Sep 2012

contb_receipt_dt

500000

0

500000

1000000

1500000

2000000

contb_receipt_amt

Figure 7.4: Campaign Contributions to Ron Paul over time.

Problem 5. Plot the running total of campaign contributions as a function

of time for Mitt Romney, Barack Obama, and Newt Gingrich (all on the

same graph). Your results should match Figure 7.5.

Each data project brings with it a new set of problems and pitfalls, but a careful

application of the principles in this lab will provide a good starting point for working

with large datasets in pandas.

82 Lab 7. Intro to pandas II

May 2011

Jul 2
011

Sep 2011

Nov 2011

Jan 2012

Mar 2
012

May 2012

Jul 2
012

Sep 2012

Nov 2012

contb_receipt_dt

0

1

2

3

4

5

6 1e8

Romney, Mitt
Obama, Barack
Gingrich, Newt

Figure 7.5: Running contribution totals for three candidates.

Lab 8

Web Technologies

Lab Objective: Learn about serialization and markup languages. You will also

learn how to communicate using the HTTP protocol.

Since the dawn of computing, the ability to make computers talk to each other

has captivated the minds of many. It wasn’t until the 1960s that such capabilities

were explored in depth. Today’s world would not be possible if computers didn’t

have the capability to network. The ability to send and receive rich, meaningful

data is the focus of our exercises in this lab.

Serialization

How would you store a Python list or dictionary outside of the interpreter? Suppose

we calculated some results and stored them in a list that we wanted to send to a

friend or colleague? However we choose to store our list, we need to be able to load

it back into the Python interpreter and use it as a list. What if we wanted to store

more complex objects? The process of serialization seeks to address this situation.

Serialization is the process of storing an object and its properties in a form that

can be saved or transmitted and later reconstructed back into an identical copy of

the original object.

JSON

JSON, pronounced “Jason”, stands for JavaScript Object Notation. This serializa-

tion method stores information about the objects as a specially formatted string. It

is easy for both humans and machines to read and write the format. When JSON

is deserialized, the string is parsed and the objects are recreated. Despite its name,

it is a completely language independent format. JSON is built on top of two types

of data structures: a collection of key/value pairs and an ordered list of values.

These data structures are more familiarly called dictionaries and lists in Python.

Python’s standard library has a module that can read and write JSON. Most JSON

libraries, though, have a fairly standard interface. If performance is critical, there

are Python modules for JSON that are written in C such as ujson and simplejson.

Let’s begin with an example.

83

84 Lab 8. Web Technologies

>>> import json

>>> json.dumps(range(5))

'[0, 1, 2, 3, 4]'
>>> json.dumps({'a': 34, 'b': 483, 'c':"Hello JSON"})

'{"a": 34, "c": "Hello JSON", "b": 483}'

As you can see, the JSON representation of a Python list and dictionary are very

similar to their respective string representations. You can also see that each JSON

message is enclosed in a pair of curly braces. We can even nest multiple messages.

>>> a = """{"car": {

"make": "Ford",

"model": "Focus",

"year": 2010,

"color": [255, 30, 30]

}

}"""

>>> t = json.loads(a)

>>> print t

{u'car': {u'color': [255, 30, 30], u'make': u'Ford', u'model': u'Focus', u'year':←↩
2010}}}

>>> print t['car']['color']
[255, 30, 30]

Most JSON libraries support the dump[s]/load[s] interface. To generate a JSON

message, we use dump which will accept the Python object and generate the message

and write it to a file. dumps does the same, but just returns the string rather than

writing it to a file. To perform the inverse operation, we use load or loads for reading

from a file or string respectively.

Many websites and web APIs make extensive use of JSON. Twitter, for example,

return JSON messages for all queries.

The built-in JSON encoder/decoder only has support for the basic Python data

structures such as lists and dictionaries. Trying to serialize a set will result in an

error

>>> a = set('abcdefg')
>>> json.dumps(a)

TypeError Traceback (most recent call last)

<ipython-input-4-373a2a7edfd2> in <module>()

----> 1 json.dumps(a)

/opt/anaconda/lib/python2.7/json/__init__.pyc in dumps(obj, skipkeys, ←↩
ensure_ascii, check_circular, allow_nan, cls, indent, separators, encoding, ←↩
default, sort_keys, **kw)

241 cls is None and indent is None and separators is None and

242 encoding == 'utf-8' and default is None and not sort_keys and not←↩
kw):

--> 243 return _default_encoder.encode(obj)

244 if cls is None:

245 cls = JSONEncoder

/opt/anaconda/lib/python2.7/json/encoder.pyc in encode(self, o)

205 # exceptions aren't as detailed. The list call should be roughly

206 # equivalent to the PySequence_Fast that ''.join() would do.

85

--> 207 chunks = self.iterencode(o, _one_shot=True)

208 if not isinstance(chunks, (list, tuple)):

209 chunks = list(chunks)

/opt/anaconda/lib/python2.7/json/encoder.pyc in iterencode(self, o, _one_shot)

268 self.key_separator, self.item_separator, self.sort_keys,

269 self.skipkeys, _one_shot)

--> 270 return _iterencode(o, 0)

271

272 def _make_iterencode(markers, _default, _encoder, _indent, _floatstr,

/opt/anaconda/lib/python2.7/json/encoder.pyc in default(self, o)

182

183 """

--> 184 raise TypeError(repr(o) + " is not JSON serializable")

185

186 def encode(self, o):

TypeError: set(['a', 'c', 'b', 'e', 'd', 'g', 'f']) is not JSON serializable

The serialization fails, because the JSON encoder doesn’t know how it should rep-

resent the set as a string. We can extend the JSON encoder by subclassing it and

adding support for sets. Since JSON has support for sequences and maps, one easy

way would be to express the set as a map with one key that tells us the data struc-

ture type, and the other containing the data in a string. Now, we can encode our

set.

class CustomEncoder(json.JSONEncoder):

def default(self, obj):

if isinstance(obj, set):

return {'dtype': 'set',
'data': list(obj)}

return json.JSONEncoder.default(self, obj)

>>> s = json.dumps(a, cls=CustomEncoder)

>>> s

'{"dtype": "set", "data": ["a", "c", "b", "e", "d", "g", "f"]}'

However, we want a Python set back when we decode. JSON will happily return

our dictionary, but the data will be in a list. How do we tell it to convert our list

back into a set? The answer is to build a custom decoder. Notice that we don’t

need to subclass anything.

accepted_dtypes = {'set': set}

def custom_decoder(dct):

dt = accepted_dtypes.get(dct['dtype'], None)

if dt is not None and 'data' in dct:

return dt(dct['data'])
return dct

>>> json.loads(s, object_hook=custom_decoder)

{u'a', u'b', u'c', u'd', u'e', u'f', u'g'}

86 Lab 8. Web Technologies

Problem 1. Python has a module in the standard library that allows easy

manipulation of times and dates. The functionality is built around a datetime

object

However, datetime objects are not JSON serializable. Determine how

best to serialize and deserialize a datetime object. The datetime object you

serialize should be equal to the datetime object you get after deserializing.

Hint: You might want to read Problem 2 before designing your solution

to this problem.

XML

XML is another data interchange format. It is a markup language rather than a

object notation language. To understand XML, we need to understand what tags

are. A tag is a special command enclosed in angled brackets (¡¿) that describe

something about the data it encloses. For example, we can represent our car from

above in the XML below.

<car>

<make>Ford</make>

<model>Focus</model>

<year>2010</year>

<color model='rgb'>255,30,30</color>
</car>

There are two strategies for reading XML data. We can read the data as a tree or

as a stream. Since XML is a hierarchical storage format, it is very easy to build a

tree of the data. The advantage is random access to any part of the document at

any time. However, all of the XML must be loaded into memory to build this tree.

Large XML files will consume huge amounts of memory if read as a tree.

To alleviate the burden of loading an entire XML document into memory all

at once, we can read the file sequentially. When streaming the XML data, we are

only reading a small chunk of the file at a time. There is no limit to size of XML

document that we can process this way as memory usage will be constant. However,

we sacrifice the random access that the tree gives us.

DOM

The DOM (Document Object Model) API allows you to work with an XML docu-

ment as a tree. Python’s XML module includes two version of DOM: xml.dom and

xml.minidom. MiniDOM is a minimal, more simple implementation of the DOM API.

The motivation behind DOM is to represent an XML as a hierarchy of elements.

This is accomplished by building a tree of the elements as the XML tags are read

from the file. DOM is useful when we want random access to all of the XML

document. This requires loading the entire file into memory. If you have a large

XML file (a couple of megabytes)

87

DOM reads an entire XML into memory and builds a tree with the tag hi-

erarchies on every parse. For large XML files, this could lead to massive memory

consumption. The DOM tree of the car above would have <car> at the root element.

This root element would have four children, <make>, <model>, <year>, and <color>. We

would traverse this DOM tree just like we would any other tree structure. DOM

trees can be searched by tag as well.

SAX

SAX, Simple API for XML, is essentially an XML state machine. This method of

reading an XML file requires that you read the XML file as the parser would. It is a

very fast, efficient way to read an XML file. The main advantage of this method for

reading an XML file is memory conservation. A SAX parser reads XML sequentially

instead of all at once. It doesn’t need to load the entire file into memory.

As the SAX parser iterates through the file, it emits events at either the start

or the end of tags. You can provide functions to handle these events.

ElementTree

ElementTree is Python’s unification of DOM and SAX into a single, high-level

API for parsing and creating XML. ElementTree provides a SAX-like interface for

reading XML files via its iterparse() method. This will have all the benefits of

reading XML via SAX. In addition to stream processing the XML, it will build the

DOM tree as it iterates through each line of the XML input. ElementTree provides

a DOM-like interface for reading XML files via its parse() method. This will create

the tag tree that DOM creates.

We will demonstrate ElementTree using the following XML.

1 <?xml version="1.0"?>

2 <contacts>

<person>

4 <firstname>John</firstname>

<lastname>Doe</lastname>

6 <phone type="mobile">1234567890</phone>

<phone type="home">5432229875</phone>

8 <email type="home">doughboy@bakery.com</email>

<address type="home">34 South Street, Jonesville</address>

10 <groups>personal,work</groups>

</person>

12 <person>

<firstname>Sally</firstname>

14 <lastname>Sue</lastname>

<phone type="mobile">8372289491</phone>

16 <groups>personal</groups>

</person>

18 <person>

<firstname>Thor</firstname>

20 <lastname></lastname>

<phone type="mobile"></phone>

22 <email type="home"></email>

<address type="home"></address>

24 <groups>work</groups>

</person>

88 Lab 8. Web Technologies

26 </contacts>

contacts.xml

First, we will look at viewing an XML document as a tree similar to the DOM

model described above.

import xml.etree.ElementTree as et

f = et.parse('contacts.xml')

manually traversing the tree

we iterate through the element directly

getchildren() is old and deprecated (not supported).

root = f.getroot()

children = list(root) # root has three children

person0 = children[0]

fields = list(person0) # the children elements of person0

we can search the entire tree for specific elements

searching for all tags equal to firstname

for n in root.iter('firstname'):
print n.text

we can also filter with multiple tags

notice we use a set lookup in the conditional inside the generator expression

fields = {'firstname', 'lastname', 'phone'}
fi = (x for x in root.iter() if x.tag in fields)

for n in fi:

print n.text

we can even modify the document tree inplace

let's remove Thor

refer to the documentation of ElementTree for adding elements

for n in root.findall("person"):

if n.find("firstname").text == 'Thor':
root.remove(n)

verify that Thor is really gone

for n in root.iter('firstname'):
print n.text

Next, we will look at ElementTree’s iterparse() method. This method is very

similar to the SAX method for parsing XML. There is one important difference.

ElementTree will still build the document tree in the background as it is parsing.

We can prevent this by clearing each element by calling its clear() method when

are finished processing it.

f = et.iterparse('contacts.xml') # this is an iterator

for event, tag in f:

print "{}: {}".format(tag.tag, tag.text)

tag.clear()

we can get both start and end events

however, start events are mostly useful for looking at attributes

or to trigger some other action on element starts.

The element is not guarenteed to be complete until the end event.

for event, tag in et.iterparse('contacts.xml', events=('start', 'end')):

89

print "{} {}<{}>: {}".format(event, tag.tag, tag.attrib, tag.text)

TCP/IP

The most common protocol that computers today use to communicate is TCP,

Transmission Control Protocol. It is used in everything from checking email, up-

loading files, and browsing web pages. Being one of the core protocols of the internet

protocol suite, it is often referred to as TCP/IP. There are four layers to the TCP/IP

protocol.

1. Network Interface: This is the level of networking hardware such as routers

and switches.

2. Internet: This level contains a group of protocols that handle routing and

movement of data on a network.

3. Transport: The critical protocols that define basic high level communication

between two computers. The two most common protocols in this layer are

TCP and UDP. TCP is by far the most widely used due to its reliability.

UDP, however, trades reliability for low latency.

4. Application: Software that utilize the transport protocols to move information

between computers. This layer includes protocols important for email, file

transfers, and browsing the web.

TCP/IP has its origins in the mid 1970s. The TCP protocol dictates how

computers connect to each, exchange bits of information called packets, and then

close the connection. TCP/IP is very reliable, ordered, and error-checked.

Python has support for communicating via TCP in the standard library. A short

demonstration will aide our discussion.

1 import socket

3 # define the parameters of the tcp connection

ip = '127.0.0.1' #the local machine

5 port = 33498 #arbitrary port number

size = 2048 # Normally 1024, but we want fast response

7

create a new socket

9 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

and bind it to our desired address and port

11 s.bind((ip, port))

start listening for requests

13 s.listen(1)

15 # Accept a request when one comes

conn, addr = s.accept()

17 print "Accepting connection from: ", addr

while True:

19 # read 20 bytes from the incoming connection

data = conn.recv(size)

21 # if we have note received any data, we terminate the connection

if not data:

90 Lab 8. Web Technologies

23 break

otherwise we send back the data we received from the client

25 print "Echoing data: ", data

conn.send(data) # echo

27 conn.close()

tcp server.py

1 #!/usr/bin/env python

3 import socket

5

ip = '127.0.0.1'
7 port = 33498

size = 2048

9 msg = "It's a beautiful networked world!"

11 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

13 s.send(msg)

15 data = s.recv(size)

print "Received data: ", data

17 s.close()

tcp client.py

We can start understanding the code above by seeing that a TCP connection is

a link between two sockets. Those sockets can be on the same machine (as in the

case above), or different machines. The machines are uniquely identified by an IP

address. The IP address used in our example is a special IP address that always

refers the local machine. Every computer has the ip

Let’s start with defining some of the basic terms. Every computer on a network

has an IP address. You can think of it as a mailing address for the computer. We

communicate with a port on the computer via sockets on both the server and the

client. This is analogous to a mailbox on the computer. There are 65535 available

ports or mailboxes. Of those 65535 ports, about 250 are commonly used. In our

script above, we use port 33498 to communicate. Ports 0 to 1023 are special reserved

ports. For example, most web traffic flows through port 80 or 443. Email servers

often uses ports 25, 110, 143, or 465. As you can see in the example code above, we

create a socket on the server that we bind to the IP address and a port number. This

socket will listen on that port for bits of network communication called packets.

On the client side, we create another socket that we bind to the same port. After

the two sockets are defined, we can create a TCP connection. A TCP connection is

a connection between two sockets. In our example, we have a client that initiates

a connection and sends a message. The server sees an incoming message and then

receives it. The message is sent in blocks, so we need to loop until we have received

all of the blocks. As we receive each block, we send it right back to where it came

from. The client receives these returned blocks and prints them to the console. We

use a similar pattern to for every transfer of data over TCP. For a few connections,

the amount of work the programmer has to do is not hard. However, imagine trying

to request a complicated web page. We would have to manage possibly hundreds

91

of connections. We would naturally want to use a higher level protocol that takes

care of the smaller details for us.

HTTP

HTTP stands for Hypertext Transfer Protocol. The protocol is centered around

a request and response paradigm. A client makes a request to a server and the

server replies with response. HTTP is an application layer networking protocol.

This means it is a higher level protocol than TCP, taking care of many of the small

details of TCP for us. It usually relies on the underlying TCP protocol to provide

networking capabilities. There are several methods defined for HTTP, but the two

most common are GET and POST. GET requests are typically used to request

information from a server. POST requests are sent to the server with the intent of

modifying the state of the server. We can send additional information with both

GET and POST requests.

Every HTTP request consists of two parts: a header and a body. The headers

contain important information about the request such as the type of request, en-

coding, among other things. We can add custom headers to any request to provide

additional information. The body of the request contains the requested data. The

body of a request may or may not be empty.

We can setup an HTTP connection in Python as demonstrated below. We will

encourage you to use the Requests library instead of the modules in the standard

library. However, the code below is illustrative of the steps in making an HTTP

connection

import httplib

conn = httplib.HTTPConnection("www.youtube.com")

conn.request("GET", "/")

resp = conn.getresponse()

if resp.status == 200:

headers = resp.getheaders()

data = resp.read()

conn.close()

print headers

print data # very long string

We start by creating a connection to specific host. Then we make a request. In

this case, we use GET request. The host we are connected to will respond and we

retrieve the response. We will need to check the status of the response to know if

our request was processed successfully. A status code of 200 means that everything

went alright. We can now attempt to read the data of the response. At the end we

explicitly close the connection.

This exchange is greatly simplified by the Requests library

import requests

r = requests.get("http://www.youtube.com")

r.close()

print r.headers

print r.content

92 Lab 8. Web Technologies

Now, lets demonstrate various things we can do with HTTP requests. We will

use a web service called HTTPBin which is very helpful in developing applications

that make HTTP requests. When making a GET request, we can send along a list

of parameters. These parameters should be a Python dictionary.

>>> data = {'key1': 0, 'key2': 1}

>>> r = requests.get("http://httpbin.org/get", params=data)

>>> print r.content

When we post to a server, we have the option of sending data. This data can be

a file object, a dictionary or a string. To send our data via post, we first serialize it

to JSON and then send the resulting string to the request.

>>> p = requests.post("http://httpbin.org/post", data=json.dumps(data))

>>> print p.content

Problem 2. You are assigned to implement a message board client. Your

solution must be able to connect to a server with a given IP address and

any specified port. Do not hard code the values in your client. You should

prompt for them every time the script is run.

The first operation that your script will need to do is connect to the

server and register the nickname that your user provides. Nicknames must

be unique to a server, meaning no two users can have the same nickname.

The next task your solution should implement is an interface whereby a

user can send and receive messages to and from the server. You may design

your own user interface.

Your solution should be able to accept special commands that start with

a double forward slash (//).

You client should accept a list of commands and perform the associated

action.

Command URL Method Action

//join Join another channel

//nick /changenick POST Change the user’s nickname

//quit Quit the message board

//pull /message/pull GET Check for new messages and dis-

play them to the user

//push /message/push POST Publish a new message on the

message board

All requests to the server must be serialized JSON.

//push Push a new message to the server. Each message must have the

fields: timestamp, content, channel, and nick. The timestamp will

be used to identify when the message was sent. The content field

will contain the body of the message. Channel will be the channel to

93

which the message is sent and the nick identifies who sent the message.

Example:

{"content": "This is a test message.",

"timestamp": "2014-07-09T15:15:44.331126",

"channel": 1,

"nick": "john"}

//pull Pull new messages from the server. Each request must have the

fields: channel, timestamp, and nick. All messages posted after the

timestamp will be retrieved. Channel tells the server which channel

to fetch messages from. Nick identifies the user that is requesting the

messages. Example:

{"timestamp": "2014-07-09T15:19:41.671257",

"channel": 1,

"nick": "john"}

//join Join a new channel. Typically, a user is only a member of one chan-

nel. Joining a new channel will change the channel they are currently

listening to. However, you may design your client such that a user can

subscribe to multiple channels. Only the client keep tracks of which

channels the user is listening to.

//nick Change the nickname of the user. Message fields are: old nick,

new nick. Server will return OK message if updating the new nickname

was successful. Otherwise, the update will have failed, and nothing

happened. Example:

{"old_nick": "john",

"new_nick": "jack"}

Note that the server requires a timestamp for many of its transactions.

The server will expect timestamps in ISO format. You will need to be able

to send timestamps serialized into the ISO format. The server will return

timestamps using ISO date formatting. You might need to be able to convert

these timestamps into datetime objects. Dates in this format are of the form

of YYYY-mm-ddTHH:MM:SS.us. You can parse this into a datetime object

using the strptime() method of the datetime class. Note, strptime() does not

natively accept microseconds, so you will have to process the string in parts.

94 Lab 8. Web Technologies

Lab 9

MongoDB

Lab Objective: In this lab we introduce MongoDB, a non-relational database

system. MongoDB shares many similarities with JSON, and includes many of the

same properties. We use MongoDB to investigate similarities and differences be-

tween different documents.

NoSQL Databases

Relational databases, such as SQL, were the most popular databases of the last

decade. These databases rely on the data having relational attributes, meaning

that each item in the database has the same attributes. We can visualize these

databases as tables. As time passed and needs changed, relational databases became

impractical for some sets of data. Sometimes the relation model is too structured.

Each item may not have the same attributes. For example, a salamander and an

apple both have attributes of size and color, but an apple does not need a gender

attribute and a salamander does not need a ripeness attribute. Relational databases

store items with the same attributes, but if we want to store a salamander and an

apple in the same database, we need a different type of database, hence the need

for non-relational databases.

A new family of databases arose that attempted to solve the problem of non-

relational attributes. Instead of designing a new relational database to meet every

need, non-relational databases were created that can adapt the different items for

specific scenarios. MongoDB is such a database. Several other databases, such as

Cassandra, Redis, and Neo4j serve similar purposes. In this lab, we will focus on

MongoDB.

MongoDB

MongoDB is a document database. It is best suited for storing data that does not

have a fixed schema. Each MongoDB database is made up of collections of one or

more documents. These documents are a special type of JSON object called BSON

(Binary JSON). For the most part, BSON objects, JSON objects, and Python

95

96 Lab 9. MongoDB

dictionaries can be used in much the same matter. However, there are a few subtle

differences, such as with special characters. Trying to use a Python dictionary that

contains the ‘$’ character will often throw errors if it is used as though it were a

BSON object.

MongoDB has both a command line interface and Python bindings. This lab

will use the official supported Python bindings, Pymongo. After being installed,

Pymongo can be imported as with other standard libraries as follows:

from pymongo import MongoClient

Create an instance of a client

Connect on the default host and port

mc = MongoClient()

The following example illustrates a good use for MongoDB: Suppose you are

running a general store. You have all sorts of inventory: food, clothing, tools, toys,

etc. There are some attributes that every item has: name, price, and producer.

Then there are attributes held by only some items: color, weight, gluten-freedom.

A SQL database would have to be full of mostly-blank rows, which is extremely

inefficient. More importantly, as you add new inventory, you will run across new

attributes. With SQL, you would have to restructure and rebuild the whole database

each time this happens. For MongoDB, this isn’t a problem. That is because it

doesn’t use relation tables. Each item is a JSON-like object (similar to a Python

dictionary), and thus can contain whatever attributes are relevant to the specific

item, without including meaningless attributes.

Creating and Removing Collections and Documents

A database stores collections, and a collection stores documents. This is the basic

hierarchy of MongoDB. Each database can have several collections, each with its own

documents. We need to create a database that will hold our collections. Imagine

we have a set of paper documents. We put the documents into folders (collections),

and the folders into a filing cabinet (the database). When we need to add another

collection, we simply create a reference to it. The new collection will not actually

be created until we add documents to it, just as we would not file away a folder

into the filing cabinet with all the rest until we have a document to be put into the

folder. You can create a database and collection as follows:

Create a new database

db = mc.db1

Create a new collection

col = db.collection1

Documents in MongoDB are represented as JSON-like objects, and so do not

adhere to a set schema. Each document can have its own fields.

col.insert({'name': 'Jack', 'age': 23})

col.insert({'name': 'Jack', 'age': 22, 'student': True, 'classes': ['Math', '←↩
Geography', 'English']})

x = col.insert({'name': 'Jill', 'age': 24, 'student': False})

97

We can check to see if the insert was successful by calling x.is_valid(x).

Problem 1. Create a MongoDB database called mydb and a collection in mydb

called rest. The file restaurants.json contains thousands of JSON objects,

each describing a single restaurant. Load these into rest. The json.loads

method should be helpful in doing this.

Querying for Documents

MongoDB uses a query by example paradigm for querying. This means that when

you query, you provide an example that the database uses to match with other

documents.

Querying methods return a Cursor object which iterates through the result set.

r = col.find({'name': 'Jack'})

This query will return all documents in the collection that have the value ‘Jack’

in the ‘name’ field. You can also use the count method to return the number of

documents that match your desired criteria.

Find how many 'students' are in the database

col.find({'student':True}).count()

We can update documents in a collection using update. Note that a simple update

acts like a replace.

col.update({'name': 'Jack','student': True})

Problem 2. The file mylans_bistro.json contains a json object describing one

additional restaurant. Insert it into the collection. Note that this entry con-

tains an additional key value not present in any other. A SQL database would

have to be entirely rebuilt to support this insertion, but with MongoDB this

is not an issue.

After this insert, use a query to list every restaurant that closes at eigh-

teen o’clock (Mylan’s Bistro should be one of these).

Query Operators

There are several special operators that we can use to define conditions in a query.

These query operators are used as keys and the queries are values.

f = list(col.find({'age': {'$lt': 24}, 'classes': {'$in': ['Art', 'English']}}))

98 Lab 9. MongoDB

Operator Description

$lt, $gt <, >

$lte ≤, ≥
$in, $nin Match any value in, not in an array, respectively

$or Logical OR

$and Logical AND

$not Logical negation

$nor Logical NOR (condition fails for all clauses)

$exists Match documents with specific field

$type Match documents with values of a specific type

$all Match arrays that contain all queried elements

Table 9.1: MongoDB query operators

Problem 3. Query your new collection to answer the following questions:

• How many of the restaurants are in Manhattan?

• How many restaurants have gotten a grade other than an “A” on a

health inspection?

• Which are the ten northernmost restaurants?

• Which restaurants have “grill” (case-insensitive) in their names?

Understand that MongoDB is not a relational database, therefore there is no

concept of a join. This also means that we cannot define database relationships

between documents. We can associate two documents by including a field that con-

tains the unique ObjectID of the other document. When we request one document,

we see it has an ObjectID, and then we run a second query to get the other docu-

ment. Any “relational” things must be handled by the developer. This means that

a document needs to contain all the information needed to find or retrieve it again.

Problem 4. Use update operators to perform the following tasks:

• Whenever a restaurant has “grill” in its name, replace “grill” with

“Magical Fire Table”.

• Increase all of the restaurant IDs by 1000.

• Delete the entries of every restaurant that has ever gotten a “C” health

inspection grade.

	Unix Shell
	More on the Unix Shell
	Basic Regular Expressions
	SQL
	SQL II
	Intro to pandas I
	Intro to pandas II
	Web Technologies
	MongoDB

