
Lab 2

NumPy and SciPy

Lab Objective: Create and manipulate NumPy arrays and learn features avail-

able in NumPy and SciPy.

Introduction

NumPy and SciPy1 are the two Python libraries most used for scientific computing.

NumPy is a package for manipulating vectors and arrays, and SciPy is a higher-level

library built on NumPy. The basic object in NumPy is the array, which is concep-

tually similar to a matrix. However, unlike a matrix, which has two dimensions, a

NumPy array can have arbitrarily many dimensions. NumPy is optimized for fast

array computations.

The convention is to import NumPy as follows.

>>> import numpy as np

Learning NumPy

The strategies discussed in the section “Learning Python” of Lab 1 will also help

you learn NumPy and SciPy. The following online resources are specific to SciPy:

� Official SciPy Documentation (http://docs.scipy.org/doc/)

� Sections 1.3 and 1.5 of the SciPy Lecture Notes (http://scipy-lectures.

github.io/)

The remainder of this lab is a brief summary of the tools available in NumPy and

SciPy, beginning with NumPy arrays.

1SciPy is also the name of a Python coding environment that includes the NumPy and SciPy
libraries, as well as IPython, matplotlib, and other tools.

17

18 Lab 2. NumPy and SciPy

Arrays

Conceptually, a 1-dimensional array (called a 1-D array) is just a list of numbers.

An n-dimensional array (or n-D array) is an array of (n − 1)-dimensional arrays.

Thus, any 2-D array is conceptually a matrix, and a 3-D array is a list of matrices,

which can be visualized as a cube of numbers. Each dimension is called an axis.

When a 2-D array is printed to the screen, the 0-axis indexes the rows and the

1-axis indexes the columns.

The NumPy array class is called ndarray. The simplest way to create an ndarray

is to define it explicitly using nested lists.

Create a 1-D array

>>> np.array([0, 3, 8, 6, 3.14])

array([0, 3, 8, 6, 3.14])

Create a 2-D array

>>> ex1 = np.array([[1, 1, 2], [3, 3, 4]])

>>> ex1

array([[1, 1, 2],

[3, 3, 4]])

You can view the length of each dimension with the shape command, and change

the shape of an array with the np.reshape() function. The number of arguments

passed to reshape tells NumPy the dimension of the new array, and the arguments

specify the length of each dimension. An argument of -1 tells NumPy to make that

dimension as long as necessary.

The 0-axis of ex1 has length 2

>>> ex1.shape

(2, 3)

>>> ex1.reshape(3, 2)

array([[1, 1],

[2, 3],

[3, 4]])

>>> ex1.reshape(-1)

array([1, 1, 2, 3, 3, 4])

Array objects also support the usual binary operators, including addition + and

element-wise multiplication *. For Python lists, the + operator performs concante-

nation and the * operator is not defined.

>>> a = [1,2,3]

>>> b = [4,5,6]

>>> a+b

[1, 2, 3, 4, 5, 6]

>>> a*b

TypeError: cannot multiply sequence by non-int of type 'list'

>>> a = np.array(a)

>>> b = np.array(b)

>>> a+b

array([5,7,9])

>>> a*b

array([4, 10, 18])

19

Why Use Arrays?

NumPy arrays are drastically more efficient than nested Python lists for large com-

putations. In this section we will compare matrix multiplication in Python and in

NumPy.

Problem 1. A matrix in NumPy is just a 2-D array. Given matrices A and

B, there are two different ways we can perform matrix multiplication. We

can use np.dot(A,B) or A.dot(B).

Perform the matrix multiplication A ∗B on the following matrices:

A =

 2 4 0

−3 1 −1

0 3 2

 B =

 3 −1 2

−2 −3 0

1 0 −2


Remember that to be able to use np.dot, we must first define A and B as

NumPy arrays.

After doing the previous problem, you should know how to implement matrix

multiplication in NumPy. On the other hand, a matrix in Python can be represented

as a list of lists. We can perform matrix multiplication using lists by using numerical

multiplication and addition. The following function will multiply two such matrices

in this manner in Python without using NumPy.

1 def arr_mult(A,B):

2 new = []

Iterate over the rows of A.

4 for i in range(len(A)):

Create a new row to insert into the product.

6 newrow = []

Iterate over the columns of B.

8 # len(B[0]) returns the length of the first row

(the number of columns).

10 for j in range(len(B[0])):

Initialize an empty total.

12 tot = 0

Multiply the elements of the row of A with

14 # the column of B and sum the products.

for k in range(len(B)):

16 tot += A[i][k] * B[k][j]

Insert the value into the new row of the product.

18 newrow.append(tot)

Insert the new row into the product.

20 new.append(newrow)

return new

arr mult.py

Table 2.1 documents how long2 one computer took to square a k × k matrix

in both Python (using the function arr_mult) and NumPy (using the method you

2You can replicate this experiment yourself. In IPython, you can find the execution time of a
line of code by prefacing it with %timeit. If you aren’t using IPython, you will need to use the
timeit function documented here: https://docs.python.org/2/library/timeit.html.

20 Lab 2. NumPy and SciPy

Data Structure k × k Time (s)

Python List 10× 10 0.0002758503

100× 100 0.1336028576

1000× 1000 200.4009799957

NumPy Array 10× 10 0.0000109673

100× 100 0.0009210110

1000× 1000 2.1682999134

Table 2.1: Time for one computer to square a k× k matrix in Python and NumPy.

Data type Description

bool Boolean

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

int64 64-bit integer

int Platform integer (depends on platform)

uint8 Unsigned 8-bit integer

uint16 Unsigned 16-bit integer

uint32 Unsigned 32-bit integer

uint64 Unsigned 64-bit integer

float16 Half-precision float

float32 Single-precision float

float64 Double-precision float (also float)

complex64 Complex number represented by two single-precision floats

complex128 Complex number represented by two double-precision floats (also complex)

Table 2.2: Native numerical data types available in NumPy.

found in Problem 1) for various values of k. As you can see, NumPy is much faster.

One reason for this is that algorithms in NumPy are usually implemented in C or

in Fortran.

Data Types

Unlike Python containers, a NumPy array requires that all of its elements have

the same data type. The data types used by NumPy arrays are machine-native and

avoid the overhead of Python objects, meaning that they are faster to compute with.

A NumPy int and a Python int are not the same; the former has been optimized

to speed up numerical computations. Datatypes supported by NumPy are shown

in Table 2.2.

Here is an example of how to manipulate data types in NumPy:

Access the data type of an array

>>> ex2 = np.array(range(5))

>>> ex2.dtype

dtype('int64')

Specify the data type of an array

21

Function Description

diag Extract a diagonal or construct a diagonal array.

empty Return a new array of given shape and type, without initializing entries.

empty_like Return a new array with the same shape and type as a given array.

eye Return a 2-D array with ones on the diagonal and zeros elsewhere.

identity Return the identity array.

meshgrid Return coordinate matrices from two coordinate vectors.

ones Return a new array of given shape and type, filled with ones.

ones_like Return an array of ones with the same shape and type as a given array.

zeros Return a new array of given shape and type, filled with zeros.

zeros_like Return an array of zeros with the same shape and type as a given array.

Table 2.3: Some functions for creating arrays in NumPy.

>>> ex3 = np.array(range(5), dtype=np.float)

>>> ex3.dtype

dtype('float64')

Creating Arrays

In addition to np.array(), NumPy provides efficient ways to create special kinds

of arrays. The function np.arange([start], stop, [step]) returns an array of num-

bers from start up to, but not including, stop. Like other functions with similar

parameters, start defaults to 0 and step defaults to 1.

>>> np.arange(5)

array([0,1,2,3,4])

>>> np.arange(10, 20, 2)

array([10, 12, 14, 16, 18])

Use np.linspace(start, stop, num=50) to create an array of num numbers evenly

spaced in the interval from start to stop inclusive.

>>> np.linspace(0, 32, 4)

array([0. , 10.66666667, 21.33333333, 32.])

We can even create arrays of random values chosen from probability distribu-

tions. These probability distributions are stored in the submodule np.random.

>>> np.random.rand(5) # uniformly distributed values in [0, 1)

array([0.21845499, 0.73352537, 0.28064456, 0.66878454, 0.44138609])

Some other commonly-used functions are np.random.randn, which samples from the

normal distribution, np.random.randint, which randomly selects integers from a range,

and np.random.random_integers which returns an array of random integers in a given

range. There are many functions for creating arrays besides these, some of which

are described in Table 2.3. See http://docs.scipy.org/doc/numpy/reference/

routines.array-creation.html for more details.

22 Lab 2. NumPy and SciPy

Indexing and Slicing

Indexing for a 1-D NumPy array works exactly like indexing for a Python list. To

access a single entry of a multi-dimenional array, say a 3-D array, you should use

the syntax f[i, j, k]. While the syntax f[i][j][k] will also work, it is significantly

slower because each bracket returns an array slice. Similarly, slicing an array works

just like slicing a list, but with more dimensions.

>>> ex4 = np.arange(25).reshape((5,5))

>>> ex4

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19],

[20, 21, 22, 23, 24]])

>>> ex4[4, -2]

23

Extract the lower right 2x2 subarray.

>>> ex4[3:, 3:]

array([[18, 19],

[23, 24]])

Extract the second column. The returned array is 1-D.

>>> ex4[:, 1]

array([1, 6, 11, 16, 21])

Reverse the order of the columns.

>>> ex4[:, ::-1]

array([[4, 3, 2, 1, 0],

[9, 8, 7, 6, 5],

[14, 13, 12, 11, 10],

[19, 18, 17, 16, 15],

[24, 23, 22, 21, 20]])

Fancy Indexing

Fancy indexing is a second way to access elements of an array. There are two types

of fancy indexing: boolean and integer. Boolean indexing uses an array of True or

False values to determine which elements of the array to take.

>>> my_array = np.array([0, 10, 20, 30, 40])

>>> bool_mask = np.array([1,0,1,1,0], dtype=bool)

>>> my_array[bool_mask]

array([0,20,30])

Return only the values larger than 25

>>> comparision_mask = my_array > 25

>>> comparision_mask

array([False, False, False, True, True], dtype=bool)

>>> my_array[comp_mask]

array([30, 40])

If we do not need to save the mask for other uses, we can achieve the same ←↩
result by doing the following:

>>> my_array[my_array>25]

23

array([30, 40])

np.argsort returns a list of indices that would sort an array

>>> my_array = np.array([4,1,6,3,7,2,5])

>>> mask = np.argsort(my_array)

>>> my_array[mask]

array([1, 2, 3, 4, 5, 6, 7])

Integer indexing uses Python lists to determine what array values to access.

>>> my_array = np.array([0,10,20,30,40])

>>> int_mask = [2,3,1]

>>> my_array[int_mask]

array([20,30,10])

Fancy indexing can be used for assignment. For example, we can set all values

of an array that are less than 25 to 0 in the following way:

>>> my_array[my_array<25] = 0

>>> my_array

array([0, 0, 0, 30, 40])

Problem 2. Write a function that accepts an array and returns an array

with all nonnegative numbers. If an entry in the inputed array is negative,

set it to 0. Though one of your first instincts may be to use a for loop, it is

much more efficient to solve this problem using fancy indexing.

Array Views and Copies

NumPy has two ways of returning an array. Slice operations and indexing always

return a view and fancy indexing always returns a copy. Understand that even

though they may look the same, views and copies are different.

A view of an array is a distinct object from the original array in Python, but it

references the same place in memory. Thus, when you change elements in a view,

you also change the array it references.

>>> ex5 = np.arange(5)

Slicing produces a view of ex5.

>>> view_ex5 = ex5[:]

>>> view_ex5

Check that ex5 and view_ex5 are distinct objects in Python.

>>> id(view_ex5) == id(ex5)

False

Change the third element of view_ex5 to 500

Changing view_ex5 also changes ex5.

>>> view_ex5[2] = 500

>>> view_ex5

24 Lab 2. NumPy and SciPy

array([0, 1, 500, 3, 4])

>>> ex5

array([0, 1, 500, 3, 4])

A copy of an array is a separate array with its own place in memory. Thus,

when you change a copy of an array, you do not affect the original array. Because

copying an array uses more memory and also more time, it should only be done when

necessary. An array can be copied using the np.copy() function (also available as a

method of the array object, for example my_array.copy() returns a copy of my_array).

>>> copy_ex5 = np.copy(ex5)

Check that ex5 and copy_ex5 are distinct objects in Python.

>>> id(copy_ex5) == id(ex5)

False

Change the third element of copy_ex5 to 1000

Changing copy_ex5 does not affect ex5.

>>> copy_ex5[2] = 1000

>>> copy_ex5

array([0, 1, 1000, 3, 4])

>>> ex5

array([0, 1, 500, 3, 4])

Whenever possible, the function np.reshape() returns a view. See the documen-

tation for more information.

More Methods of NumPy Arrays

Some of the more common methods of NumPy arrays are described in Table 2.4.

A more comprehensive list can be found at http://docs.scipy.org/doc/numpy/

reference/generated/numpy.ndarray.html.

Many of these methods have the option to operate along an axis. When called

in this way on an n-D array, these methods return an (n− 1)-D array (the specified

axis is collapsed in the evaluation process).

>>> ex6 = np.arange(9).reshape(3, 3)

>>> ex6

array([[0, 1, 2],

[3, 4, 5],

[6, 7, 8]])

Return the maximum value in the array

>>> ex6.max()

8

Return the maximum values evaluated along the 0-axis

>>> ex6.max(axis=0)

array([6, 7, 8])

Return the maximum values evaluated along the 1-axis

>>> ex6.max(axis=1)

array([2, 5, 8])

25

Function Description

all returns True if all elements evaluate to True

any returns True if any elements evaluate to True

argmax indices of maximum value(s)

argmin indices of minimum value(s)

argsort indices that would sort the array

astype casts a copy of an array to a different data type

clip restrict values in an array to fit within a given range

conj return the complex conjugate of the array

copy return a copy of the array

diagonal return a given diagonal of the array

dot matrix multiplication

max max element of the array

mean average of the array

min minimum element of the array

prod product of elements of the array

ravel make a flattened version of an array, return a view if possible

reshape return a view of the array with a changed shape

round return a rounded version of the array

sort sort the array in place

std compute the standard deviation

sum sum the elements of the array

swapaxes return a view with the given axes swapped

tolist return the array represented as a list or nested list

trace return the sum of the elements along the main diagonal

var return the variance of the array

vstack stack arrays in sequence vertically

Table 2.4: A few of the methods of NumPy arrays.

Problem 3. Write a function which accepts an integer n as input and does

the following:

1. Creates an n × n array of floats randomly chosen from a normal dis-

tribution.

2. Computes the mean of each row (use a built-in command).

3. Computes the variance of these means (use a built-in command).

As you increase n, what happens to the output of your function? This

illustrates one version of the Law of Large Numbers, about which you will

learn more later on.

26 Lab 2. NumPy and SciPy

Problem 4. One good application of array slicing is the Jacobi method for

solving Laplace’s equation, which is used to model steady-state heat flow on

a square. This problem will help you implement the Jacobi method.

Make a function that accepts an array and a float (which represents a

tolerance) as input and does the following:

1. Makes a copy of the array.

2. Creates a variable to track the difference between the arrays. Initialize

it as the tolerance parameter your function accepts.

3. While the difference is greater than or equal to the tolerance

(a) Sets all points that are not on an edge of the new array equal to

the average of their 4 immediate neighbors. Use the values from

the old array for this computation. This should only take one

line and should be based entirely on array slicing, NOT iterating

through the array. (Hint: given a 2D array A, the slice A[1:-1,1:-1]

references all non-edge entries, A[:-2,1:-1] references the upper

neighbors, and A[1:-1,2:] references the right neighbors.)

(b) Updates the difference to be the maximum of the absolute value

of the new array minus the old one.

(c) Copies the values from the new array into the old one (without

creating a new array).

Now use the following code to generate a plot of your results.

1 from matplotlib import pyplot as plt

2 from mpl_toolkits.mplot3d import Axes3D

n = 100

4 tol = .0001

U = np.ones ((n, n))

6 U [:,0] = 100 # sets west boundary condition

U [:,-1] = 100 # sets east boundary condition

8 U [0] = 0 # sets north boundary condition

U [-1] = 0 # sets south boundary condition

10 # U has been changed in place (note that laplace is the name of

the function in this case).

12 laplace(U, tol)

x = np.linspace(0, 1, n)

14 y = np.linspace(0, 1, n)

X, Y = np.meshgrid(x, y)

16 fig = plt.figure()

ax = fig.gca(projection = '3d')

18 ax.plot_surface (X, Y, U, rstride=5)

plt.show()

laplace plot.py

It should resemble the following figure.

27

Iterating Through Arrays

Iterating through an array negates most speed advantages of NumPy. You should

avoid doing this whenever possible. You can often avoid iterating through arrays

by using array broadcasting and universal functions, discussed in the next section.

It is occasionally valid to iterate through an array. The function np.nditer() will

create an object that iterates through an array as quickly as possible.

NumPy and SciPy

We now introduce some additional features of NumPy and SciPy.

Array Broadcasting

Many matrix operations make sense only when the two operands have the same

shape. Two examples are addition and element-wise multiplication. Broadcasting

is NumPy’s way of extending such operations to accept some (not all) operands with

different shapes. Broadcasting happens automatically whenever it is necessary.

To understand broadcasting, let us look at an example.

>>> A = np.ones(3);

>>> A

array([1., 1., 1.])

>>> B = np.vstack([1, 2, 3])

>>> B

array([[1],

[2],

[3]])

>>> A+B

array([[2., 2., 2.],

[3., 3., 3.],

[4., 4., 4.]])

28 Lab 2. NumPy and SciPy

We will now describe the algorithm used to obtain the result for A+B above. First,

the shapes of A and B are lined up, starting at the far right, and 1’s are prepended

to the shorter tuple. So

A (1-D array): 3

B (2-D array): 3 x 1

becomes

A (1-D array): 1 x 3

B (2-D array): 3 x 1

For broadcasting to work, the dimensions must be compatible; that is, in a given

axis, the lengths are equal, or one of the lengths is 1. Second, the arrays A and B

are “stretched” one axis at a time until the lengths of their axes are the same. In

each axis, if the lengths are different, the smaller array is copied along that axis (or

“stretched”), until it is the size of the larger array. Conceptually, we are creating

new 3× 3 arrays A′ and B′ where

A′ =

 1 1 1

1 1 1

1 1 1

 and B′ =

 1 1 1

2 2 2

3 3 3

 .
Finally, NumPy returns the sum A′ +B′.

We emphasize that the “stretching” in this example is only conceptual, and no

new array A′ or B′ is created. However, you should still be careful when broadcast-

ing large arrays because you can fill the RAM on your computer, which can some-

times freeze the system. For a more detailed description of array broadcasting rules,

see http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html.

Problem 5. Create a 100× 100× 3 array of random integers taking values

in the range [0, 255]. Such an array can represent an RGB image of 100×100

pixels, where each pixel is associated with an array of three integers indicating

the amounts of red, green, and blue color present in that pixel. Use array

broadcasting to multiply the red and green values by 0.5. (Such an operation

would tone down the red and green colors and make the image appear more

blue.)

To visualize your solutions, you may use the following function.

1 original, blue = blue_shift()

2 original = 255 - original

blue = 255 - blue

4 plt.subplot(1,2,1)

plt.imshow(original)

6 plt.subplot(1,2,2)

plt.imshow(blue)

8 plt.show()

blue shift plot.py

29

Universal Functions

A universal function, or ufunc, operates on an array element-wise. It outputs an

array of the same shape and datatype as the input array. Using a universal function

is usually much faster than iterating through the array yourself.

Many scalar functions from the Python standard library have a universal analog

that operates on arrays. For example, math.sin() operates on scalars, and numpy.sin

() operates on arrays. If you have a simple operation that you want to perform

element-wise on an array, you should see if SciPy has a universal function that will

do it (it probably does). For a list of available ufuncs, see http://docs.scipy.

org/doc/numpy/reference/ufuncs.html#available-ufuncs.

Most universal functions also allow you to specify an output array, which must

have the same shape as the input array. Doing so can reduce memory allocation.

>>> ex7 = np.arange(3, dtype=float)

Take exp(ex7) and store the result in ex7.

>>> np.exp(ex7, out=ex7)

>>> ex7

array([1. , 2.71828183, 7.3890561])

Although universal functions also accept scalar inputs, they can be much slower

than the corresponding standard library function. Thus, use standard library func-

tions on scalars and universal functions on arrays.

Linear Algebra

Both NumPy and SciPy have a linear algebra library, but the SciPy library is larger.

The SciPy linear algebra library is typically imported as follows:

from scipy import linalg as la

The linear algebra library contains several functions to construct special ma-

trices, located in linalg.special_matrices. There are also functions that will invert

matrices, find determinants and norms, solve linear systems and least squares prob-

lems, and find special matrix decompositions. You can read more about the linear

algebra capabilities of SciPy in the documentation for the linalg module found at

http://docs.scipy.org/doc/scipy/reference/linalg.html.

Finally, the scipy.linalg library has a matrix class that is very similar to a 2-D

NumPy array. The matrix class can be convenient when doing matrix operations.

However, in such situations we still recommend using NumPy arrrays, which have

many of the same features and are also compatible with all other SciPy operations.

The scipy.linalg library will be essential for the remainder of the labs in this

manual. We will address the details of this package at length in future labs.

30 Lab 2. NumPy and SciPy

