
Lab 1

Invertible Affine
Transformations and
Linear Systems

Lab Objective: Apply affine transformations to a set of vectors in R2 and solve

linear systems.

Linear transformations in R2

Dilations

A dilation of the vector space rescales the vectors. Graphically, a dilation stretches

or compresses the space. A linear transformation is a dilation if and only if its

matrix representation is diagonal, so in particular all Type II elementary matrices

are dilations. The matrix

(
1.5 0

0 1.5

)
corresponds to the dilation in Figure 1.1.

Problem 1. Write a function that accepts an array of points and an array

giving the stretching factors in each direction. Your function should return

the dilated points.

Included with this lab is a dataset of points saved as a numpy array. To

import this array, use np.load("pi.npy"). This function will return an array

of size (2, 368). This array represents 368 points in R2 stored as columns.

To check your work, plot the original points and their images under the

transformation using the function plot_transform() defined below.

import numpy as np

from matplotlib import pyplot as plt

def plot_transform(original, new):

"""Display a plot of points before and after a transform.

Inputs:

original (array) - Array of size (2,n) containing points in R2

as columns.

new (array) - Array of size (2,n) containing points in R2

1

2 Lab 1. Invertible Affine Transformations and Linear Systems

Figure 1.1: An example of a dilation. The top image was stretched by a factor of

1.5 in all directions, producing the bottom image.

as columns.

"""

v = [-5,5,-5,5]

plt.subplot(1, 2, 1)

plt.title('Before')

plt.gca().set_aspect('equal')

plt.scatter(original[0], original[1])

plt.axis(v)

plt.subplot(1, 2, 2)

plt.title('After')

plt.gca().set_aspect('equal')

plt.scatter(new[0], new[1])

plt.axis(v)

plt.show()

Rotations

A second type of linear transformation is to rotate vectors around the origin. A ro-

tation of θ radians counterclockwise corresponds to the matrix

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

When θ = π/3 we get the rotation matrix illustrated in Figure 1.2.

3

Figure 1.2: An example of a rotation. The top image was rotated by π/3, producing

the bottom image.

Problem 2. Write a function that accepts an array of points and the angle

of rotation (in radians). Your function should return the rotated points.

To check your work, plot the original points and their images under the

transformation using the function plot_transform() defined in Problem 1.

Shears

A third type of linear transformation is a shear, which “slants” a set of vectors.

The corresponding matrix is a Type III elementary matrix. A horizontal shear has

the form

(
1 c

0 1

)
and a vertical skew has the form

(
1 0

c 1

)
. Notice that horizontal

skews fix the y-coordinate of a vector while vertical skews fix the x-coordinate. The

horizontal shear in Figure 1.3 corresponds to the matrix

(
1 1.02

0 1

)
.

Reflections

A fourth type of linear transformation is reflections about a line, also called House-

holder transformations. Reflecting about a line spanned by (l1, l2) corresponds to

4 Lab 1. Invertible Affine Transformations and Linear Systems

Figure 1.3: An example of a shear. The top image was sheared horizontally to

produce the bottom image.

the matrix

1

l21 + l22

(
l21 − l22 2l1l2
2l1l2 l22 − l21

)
.

For example, the line y = x is spanned by (1, 1). In this case the corresponding

matrix

(
0 1

1 0

)
is a Type I elementary matrix, in fact the only one of size 2×2. As

another example, the reflection in Figure ?? about the line y = (1/
√

3)x corresponds

to the matrix 1
4

(
2 2

√
3

2
√

3 −2

)
.

Composition of linear transformations

Recall that composition of linear transformations corresponds to matrix multipli-

cation. For example, if S is a matrix representing a shear and R is a matrix

representing a rotation, then RS represents a shear followed by a rotation.

In fact, any linear transformation of R2 is a composition of the transformations

discussed in this lab. This is because reflections, dilations, and shears provide

us with all the elementary matrices, and every matrix is a product of elementary

matrices.

5

Figure 1.4: An example of a reflection. The top image was reflected about the line

y = (1/
√

3)x, producing the bottom image.

Affine transformations

Translations

A translation is a map T : R2 → R2 defined by T (x) = x + b where b ∈ R2. For

example, if b = (2, 0)T, then applying T to an image will shift it left by 2. This

translation is illustrated in Figure 1.5.

Translations are usually NOT linear maps. Therefore, they cannot be repre-

sented as matrix multiplication.

Problem 3. Write a function that accepts an array of points and an array

indicating how much to shift them in each direction. The function should

return the translated points. Hint: You can construct a 2 × 1 array using

the syntax np.vstack([a,b]). This may be more convenient for broadcasting.

Another hint: To check your work, plot the original points and their im-

ages under the transformation using the function plot_transform() defined in

Problem 1.

6 Lab 1. Invertible Affine Transformations and Linear Systems

Figure 1.5: An example of a translation. The top image was translated by the

vector (2, 0)T to produce the bottom image.

Affine transformations

Translations, together with linear transformations, make up the broader class of

transformations called “affine transformations.” These are transformations of the

form T : R2 → R2, T (X) = AX + b where A is an n× n matrix and b ∈ Rn. Affine

transformations include all compositions of scalings, rotations, dilations, reflections,

and translations. For example, if S represents a shear and R a rotation, and if b

is a vector in R2, then T (x) = RSx + b first shears x, then rotates it, and finally

translates it by b.

Problem 4. Imagine a particle p1 rotating around a second particle p2
which is moving through R2 in a straight line. Suppose p2 begins at the

origin and p1 begins at (1, 0). We can compute the trajectory of p1 using

affine transformations.

1. Write a function that returns the position of p1 at a time t. Your

function should accept a time t, an angular velocity ω, a direction

vector v, and a speed s. Assume p1 rotates with angular velocity ω

and p2 moves in the direction of v with speed s. The location of p1 at

time t can be computed as follows:

7

� Calculate the position of p2 at time t with the formula (st/‖v‖)v.

� Calculate the position of p1 as follows:

– Rotate p1 by tω radians.

– Translate the resulting vector by the vector equal to the po-

sition of p2 at time t.

Plot the trajectory of p1 on the time interval (0, 10) assuming ω = π, v =

(1, 1), and s = 2. Your graph should look something like Figure 1.6.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Figure 1.6: Solution to Problem 4.

Linear systems

This section describes efficient algorithms for solving systems of linear equations.

Programming elementry row operations

When you perform a row operation on a matrix, you are really left-multiplying by

some elementary matrix. However, matrix multiplication is not the most efficient

way to implement row operations. It is much faster to perform row operations by

modifying the array in place, and only changing those entries that are affected by

the operation. The following code implements the three elementary row operations

by modifying the array in place.

1 def type_I(A, i, j):

8 Lab 1. Invertible Affine Transformations and Linear Systems

2 """Swap the i-th and j-th rows of A."""

A[i], A[j] = np.copy(A[j]), np.copy(A[i])

4

def type_II(A, i, const):

6 """Multiply the i-th row of A by const."""

A[i] *= const

8

def type_III(A, i, j, const):

10 """Add a constant of the j-th row of A to the i-th row."""

A[i] += const*A[j]

row opers.py

Programming row reduction

When you solve a linear system by reducing the matrix with row operations, it

is most efficient to reduce only to row echelon form (REF) 1 and then use back

substitution. Here is some code that reduces a matrix to REF.

>>> A = np.array([[4., 5., 6., 3.],[2., 4., 6., 4.],[7., 8., 0., 5.]])

array([[4., 5., 6., 3.],

[2., 4., 6., 4.],

[7., 8., 0., 5.]])

>>> A[1] -= (A[1,0]/A[0,0]) * A[0]

>>> A[2] -= (A[2,0]/A[0,0]) * A[0]

>>> A[2,1:] -= (A[2,1]/A[1,1]) * A[1,1:]

>>> A

array([[4. , 5. , 6. , 3.],

[0. , 1.5, 3. , 2.5],

[0. , 0. , -9. , 1.]])

In the third row operation modified only a part of the third row because we knew

that the first value would still be 0. Modifying only those entries of the array that

are affected by a row operation will save a lot of time when you are row reducing a

large matrix.

Beware that round-off error in row reduction can cause serious problems. Sup-

pose we wish to row reduce a matrix A as follows.

>>> A = np.array([[4., 5., 6., 3.],[2., 2.5, 6., 4.],[7., 8., 0., 5.]])

array([[4., 5., 6., 3.],

[2., 2.5, 6., 4.],

[7., 8., 0., 5.]])

>>> A[1] -= (A[1,0]/A[0,0]) * A[0]

>>> A[2] -= (A[2,0]/A[0,0]) * A[0]

If we work this out by hand, at this point we have

A =

4 5 6 3

0 0 3 2.5

0 −7.5 −10.5 −.25

 . (1.1)

If we swap the second and third rows, then the matrix is in row echelon form.

However, suppose that due to round-off error, the machine instead computes

1We do not require leading coefficients to be 1 in the REF.

9

A =

4 5 6 3

0 10−15 3 2.5

0 −7.5 −10.5 −.25

 .

The algorithm would then attempt to pivot on the A[1,1] entry as follows.

>>> A[2,1:] -= (A[2,1]/A[1,1]) * A[1,1:]

>>> A

array([[4. , 5.0e+00 , 6.00e+00 , 3.000e-00],

[0. , 1.0e-14 , 3.00e+00 , 2.500e-00],

[0. , 0.0e+00 , 2.25e+14 , 1.875e+14]])

The round-off error in the A[1,1] entry has affected the third row, and the matrix

is now much different than the correct answer in (1.1). In larger matrices, round-

off error can propagate through many steps in a calculation, resulting in garbage

output.

Some of NumPy’s matrix algorithms use row reduction. NumPy’s methods use

several clever tricks to minimize the impact of round-off errors. However, these

methods may still give you garbage output due to round-off error, especially if the

matrix is ill-conditioned. You should always be aware of this possibility.

Problem 5. Write a function which reduces a square matrix to REF. You

may make the following assumptions:

1. The matrix is invertible.

2. During your row reduction, a zero will never appear on the main diag-

onal.

3. All round-off errors may be ignored.

During a row operation, do not modify any entries that you know will be

zero before and after the operation.

The LU decomposition

The LU decomposition of a square matrix A is a factorization A = LU where U is

an upper triangular and L is a lower triangular matrix. In fact, U is the REF of A

and L is a product of Type III elementary matrices whose inverses reduce A to U .

Thus, the LU decomposition is a way of storing the REF and “how we got there.”

The LU factorization of A exists only when A can be reduced to REF using only

Type III elementary matrices (no row swaps). However, we can always permute the

rows of A to obtain a matrix that has an LU decomposition. If P encodes the row

swaps, then a decomposition PA = LU always exists.

If A has an LU decomposition (not requiring row swaps), then we can find it

as follows. Reduce A to REF with k row operations, corresponding to matrices

E1, . . . , Ek. Then U = Ek . . . E2E1A, where U is the REF of A. Because there were

10 Lab 1. Invertible Affine Transformations and Linear Systems

no row swaps, each Ei is a lower triangular Type III matrix. Then E−1
i is also lower

triangular. Thus, L = (Ek . . . E2E1)−1 is lower triangular, and LU = A.

Because L = (Ek . . . E2E1)−1 = IE−1
1 E−1

2 . . . E−1
k , we can compute L by right-

multiplying the identity by the matrices we used to reduce U . In fact, in this special

situation, each right-multiplication will change only one entry of L. We have the

following algorithm for the LU decomposition, assuming it exists.

Algorithm 1.1 The algorithm for LU decomposition of a matrix A. This algorithm

returns lower triangular L and upper triangular U such that A = LU .

1: procedure LU Decomposition(A)

2: m,n← shape(A)

3: U ← copy(A)

4: L← Id(n)

5: for i = 1 . . . n− 1 do

6: for j = 0 . . . i− 1 do

7: L[i, j]← U [i, j]/U [j, j]

8: U [i, j :]← U [i, j :]− L[i, j]U [j, j :]

9: return L,U

Problem 6. Write a function that finds the LU decomposition of a square

matrix. You may assume that the matrix has an LU decomposition.

The LU decomposition can be performed in-place by storing U on and above

the main diagonal of the array and storing L below it. The main diagonal of L does

not need to be stored since all its entries are ones.

Applications of the LU decomposition

The LU decomposition is a more efficient way to solve linear systems than row

reduction, and it can also be used to quickly compute inverses and determinants.

SciPy implements these methods in the linalg module, specifically in the functions

linalg.lu_factor, linalg.solve, linalg.inv, and linalg.det.

Let us see how to use the LU decomposition to solve matrix equations. Sup-

pose that after row swaps, A has the decomposition PA = LU . Then Ax = b is

equivalent to LUx = Pb. We can solve this system by first solving Ly = Pb and

then Ux = y. Since L and U are triangular, these systems can be solved with

backward and forward substitution, which is faster than row reduction. Thus, we

can perform row reduction once to compute the LU factorization of A, and then we

can use substitution to solve Ax = b many different values of b. This technique is

significantly faster than storing A−1 and then computing A−1b (see Problem 7).

Problem 7. In this problem you will solve the system Ax = b for fixed A

and many different values of b. You will do this in two ways. For a random

11

1000× 1000 array A and a random 1000× 500 array B do the following:

1. Time la.lu_factor(A).

2. Time la.inv(A).

3. Store the output of la.lu_factor(). Time la.lu_solve() on this stored

output and B.

4. Store the inverse of A. Time how long it takes to multiply A−1 by

B. Print each of these times. What can you conclude about the more

efficient way to solve linear systems?

Our technique for solving linear equations can also be used to invert matrices.

We can compute A−1 by solving LUxi = Pi for every Pi that is a column of P .

Then A−1 is the matrix with columns x1, x2, . . . , xn.

Finally, the LU decomposition also gives us an efficient way to compute de-

terminants. For if PA = LU , then det(A) = [det(P)]−1 det(L) det(U). But the

determinant of a triangular matrix is the product of its diagonal entries, and every

diagonal entry of L is 1. Also, det(P) is the number of row swaps we applied to A

to put it in the appropriate form. So if U has diagonal entries uii for i = 1, . . . , n,

then

det(A) = (−1)S

(
n∏

i=1

uii

)
,

where S is the number of row-swaps.

	Invertible Affine Transformations and Linear Systems

