
Lab 1

Least squares and
Eigenvalues

Lab Objective: Use least squares to fit curves to data and use QR decomposition

to find eigenvalues.

Least Squares

A linear system Ax = b is overdetermined if it has no solutions. In this situation,

the least squares solution, denoted as x̂, is “closest” to a solution. By definition,

x̂ is the vector such that Ax̂ will equal the projection of b onto the range of A.

We can compute x̂ by solving the Normal Equation ATAx̂ = ATb (see Volume 1

Section 3.8). In this lab, we will be considering matrices in Mm×n(R). Therefore,

we will use the transpose instead of the Hermitian.

Solving the Normal Equation

If A is full rank, we can use its QR decomposition to solve the normal equation. In

many applications, A is usually full rank, including when least squares is used to

fit curves to data.

Let A = QR be the QR decomposition of A, so R =

(
R0

0

)
where R0 is n×n,

nonsingular, and upper triangular. It can be shown that x̂ is the least squares

solution to Ax = b if and only if R0x̂ = (QTb)[: n]. Here, (QTb)[: n] refers to the

first n rows of QTb. Since R is upper triangular, we can solve this equation quickly

with back substitution. (see Volume 1 Exercise 3.46)

Problem 1. Write a function that accepts a matrix A and a vector b and

returns the least squares solution to Ax = b. Use the QR decomposition

as outlined above. Your function should use SciPy’s functions for QR de-

composition and for solving triangular systems, which are la.qr() and la.

1

2 Lab 1. Least squares and Eigenvalues

solve_triangular(), respectively. If you are unfamiliar with these functions,

consult the documentation of these functions using object introspection.

Using Least Squares to Fit Curves to Data

The least squares solution can be used to find the curve of a chosen type that best

fits a set of points.

Example 1: Fitting a Line

For example, suppose we wish to fit a general line y = mx + b to the data set

{(xk, yk)}nk=1. When we plug the constants (xk, yk) into the equation y = mx+b, we

get a system of linear equations in the unknowns m and b. This system corresponds

to the matrix equation 
x1 1

x2 1

x3 1
...

...

xn 1


(
m

b

)
=


y1
y2
y3
...

yn

 .

Because this system has two unknowns, it is guaranteed a solution if it has two or

fewer equations. In applications, there will usually be more than two data points,

and these will probably not lie in a straight line, due to measurement error. Then

the system will be overdetermined. The least squares solution to this equation will

be a slope m̂ and y-intercept b̂ that produce a line y = m̂x + b̂ which best fits our

data points.

Let us do an example with some actual data. Hooke’s law from physics says

that the displacement x should be proportional to the load F , or F = kx for some

constant k. The equation F = kx describes a line with slope k and F -intercept

0. So the setup is similar to the setup for the general line we discussed above,

except we already know b = 0. When we plug our seven data points (x, F) into the

equation F = kx, we get seven linear equations in k, corresponding to the matrix

equation 

1.04

2.03

2.95

3.92

5.06

6.00

7.07


(
k
)

=



3.11

6.01

9.07

11.99

15.02

17.91

21.12


.

We expect such a linear system to be overdetermined, and in fact it is: the equation

is 1.04k = 3.11 which implies k = 2.99, but the second equation is 2.03k = 6.01

which implies k = 2.96.

We can’t solve this system, but its least squares solution is a “best” choice for

k. We can find the least squares solution with the SciPy function linalg.lstsq().

We pass this function the matrix A and the vector b from the normal equation.

3

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

Figure 1.1: The graph of the spring data together with its linear fit.

This function returns a tuple of several values, the first of which is the least squares

solution, x̂.

>>> A = np.vstack([1.04,2.03,2.95,3.92,5.06,6.00,7.07])

>>> b = np.vstack([3.11,6.01,9.07,11.99,15.02,17.91,21.12])

>>> k = la.lstsq(A, b)[0]

>>> k

array([[2.99568294]])

Hence, to two decimal places, k = 3.00. We plot the data against the best-fit line

with the following code, whose output is in Figure 1.1

>>> from matplotlib import pyplot as plt

>>> x0 = np.linspace(0,8,100)

>>> y0 = k[0]*x0

>>> plt.plot(A,b,'*',x0,y0)

>>> plt.show()

Problem 2. Load the linepts array from the file data.npz. The following

code stores this array as linepts.

linepts = np.load('data.npz')['linepts']

4 Lab 1. Least squares and Eigenvalues

x 5 -53 -45 28 74 -51 65 142 120

y 11 35 139 170 -7 87 -24 64 131

Table 1.1: Points used in example of fitting to a circle using least squares.

The linepts array has two columns corresponding to the x and y coordinates

of some data points.

1. Use least squares to fit the line y = mx+ b to the data.

2. Plot the data and your line on the same graph.

Example 2: Fitting a Circle

Now suppose we wish to fit a general circle to a data set {(xk, yk)}nk=1. Recall that

the equation of a circle with radius r and center (c1, c2) is

(x− c1)2 + (y − c2)2 = r2. (1.1)

After expanding and rearranging this equation, we get

2c1x+ 2c2y + r2 − c21 − c22 = x2 + y2.

To find c1, c2, and r with least squares, we need linear equations. The equation

above is not linear because of the r2, c21, and c22 terms. Note that it is acceptable to

have the x2 and y2 terms because the variables in this equation are r, c1, and c2,

not x and y. We can do a trick to make this equation linear: create a new variable

c3 defined by c3 = r2 − c21 − c22.

For a general data point (xk, yk), we get the linear equation

2c1xk + 2c2yk + c3 = x2k + y2k.

Thus, we can find the best-fit circle from the least squares solution to the matrix

equation 
2x1 2y1 1

2x2 2y2 1
...

...
...

2xn 2yn 1


c1c2
c3

 =


x21 + y21
x22 + y22

...

x2n + y2n

 . (1.2)

If the least squares solution is ĉ1, ĉ2, ĉ3, then the best-fit circle is

(x− ĉ1)2 + (y − ĉ2)2 = ĉ3 + ĉ1
2 + ĉ2

2.

As an example, we use least squares to find the circle that best fits the nine

points found in Table 1.1:

We enter them into Python as a 9× 2 array.

5

>>> P = np.array([[5,11],[-53,35],[-45,139],[28,170],[74,-7],

[-51,87],[65,-24],[142,64],[120,131]])

We compute A and b according to Equation 1.2.

>>> A = np.hstack((2*P[:,:1], 2*P[:,1:], np.ones((9,1))))

>>> b = P[:,:1]**2 + P[:,1:]**2

Then we use SciPy to find the least squares solution.

>>> c1, c2, c3 = la.lstsq(A, b)[0]

We can solve for r using the relation r2 = c3 + c21 + c22.

>>> r = np.sqrt(c1**2 + c2**2 + c3)

A good way to plot a circle is to use polar coordinates. Using the same variables

as before, the equation for a general circle is x = r cos(θ) + c1 and y = r sin(θ) + c2.

With the following code we plot the data points and our best-fit circle using polar

coordinates. The resulting image is Figure 1.2.

In the polar equations for a circle, theta goes from 0 to 2*pi.

>>> theta = np.linspace(0,2*np.pi,200)

>>> plt.plot(r*np.cos(theta)+c1,r*np.sin(theta)+c2,'-',P[:,0],P[:,1],'*')

>>> plt.show()

Problem 3.

1. Load the ellipsepts array from data.npz. This array has two columns

corresponding to the x and y coordinates of some data points.

2. Use least squares to fit an ellipse to the data. The general equation for

an ellipse is

ax2 + bx+ cxy + dy + ey2 = 1.

You should get 0.087, −0.141, 0.159, −0.316, 0.366 for a, b, c, d, and e

respectively. Generate a plot of the resulting curve and the data points

used to produce the curve.

We can plot our result using polar coordinates as we did when plotting

the circle. Code for visualizing your best-fit ellipse is given below. Note this

bit of code plots the curve and not the data points.

def plot_ellipse(X, Y, a, b, c, d, e):

def get_r(a, b, c, d, e, theta_space=200):

"""

Input:

theta - a numpy.ndarray of increasing values of theta from 0 to ←↩
2pi.

Recommended to define theta outside the function as:

np.linspace(0,2*np.pi,200)

6 Lab 1. Least squares and Eigenvalues

50 0 50 100 150

0

50

100

150

200

Figure 1.2: The graph of some data and its best-fit circle.

a,b,c,d,e - np.float64's which are the coefficients from the ←↩
equation

of an ellipse of the form ax^2 + bx + cxy + dy + ey^2 = ←↩
1

Returns:

r - radius from the origin to the curve using polar coordinates

"""

theta = np.linspace(0,2*np.pi,theta_space)

A = a*(np.cos(theta)**2) + c*np.cos(theta)*np.sin(theta) + e*(np.←↩
sin(theta)**2)

B = b*np.cos(theta) + d*np.sin(theta)

r = (-B + np.sqrt(B**2 + 4*A))/(2*A)

return r,theta

r,theta = get_r(a,b,c,d,e)

plt.plot(r*np.cos(theta), r*np.sin(theta), color = "r")

plt.plot(X,Y,".", color = "b")

plt.axes().set_aspect('equal', 'datalim')

plt.show()

7

Computing Eigenvalues

The eigenvalues of a matrix are the roots of its characteristic polynomial. Thus, to

find the eigenvalues of an n × n matrix, we must compute the roots of a degree-n

polynomial. This is easy for small n. For example, if n = 2 the quadratic equation

can be used to find the eigenvalues. However, Abel’s Impossibility Theorem says

that no such formula exists for the roots of a polynomial of degree 5 or higher.

Theorem 1.1 (Abel’s Impossibility Theorem). There is no general algebraic

solution for solving a polynomial equation of degree n ≥ 5.

Thus, it is impossible to write an algorithm that will exactly find the eigenvalues

of an arbitrary matrix. (If we could write such an algorithm, we could also use it to

find the roots of polynomials, contradicting Abel’s theorem.) This is a significant

result. It means that we must find eigenvalues with iterative methods, methods that

generate sequences of approximate values converging to the true value.

The Power Method

There are many iterative methods for finding eigenvalues. The power method finds

an eigenvector corresponding to the dominant eigenvalue of a matrix, if such an

eigenvalue exists. The dominant eigenvalue of a matrix is the unique eigenvalue of

greatest magnitude.

To use the power method on a matrix A, begin by choosing a vector x0 such

that ‖x0‖ = 1. Then recursively define

xk+1 =
Axk
‖Axk‖

.

If

� A has a dominant eigenvalue λ, and

� the projection of x0 into the subspace spanned by the eigenvectors correspond-

ing to λ is nonzero,

then the vectors x0,x1,x2, . . . will converge to an eigenvector of A corresponding

to λ. (See [TODO: ref textbook] for a proof when A is semisimple, or [TODO: ref

something else] for a proof in the general case.)

If all entries of A are positive, then A will always have a dominant eigenvalue

(see [TODO: ref something!] for a proof). There is no way to guarantee that the

second condition is met, but if we choose x0 randomly, it will almost always satisfy

this condition.

Once you know that x is an eigenvector of A, the corresponding eigenvalue is

equal to the Rayleigh quotient

λ =
〈Ax, x〉
‖x‖2

.

8 Lab 1. Least squares and Eigenvalues

Problem 4. Write a function that implements the power method to com-

pute an eigenvector. Your function should

1. Accept a matrix and a tolerance tol.

2. Start with a random vector.

3. Use the 2-norm wherever a norm is needed (use la.norm()).

4. Repeat the power method until the vector changes by less than the

tolerance. In mathematical notation, you are defining x0, x1, . . . xk,

and your function should stop when ‖xk+1 − xk‖ < tol.

5. Return the found eigenvector and the corresponding eigenvalue (use

np.inner()).

Test your function on positive matrices.

The QR Algorithm

The disadvantage of the power method is that it only finds the largest eigenvector

and a corresponding eigenvalue. To use the QR algorithm, let A0 = A. Then let

QkRk be the QR decomposition of Ak, and recursively define

Ak+1 = RkQk.

Then A0, A1, A2, . . . will converge to a matrix of the form

S =


S1 ∗ · · · ∗

0 S2
. . .

...
...

. . .
. . . ∗

0 · · · 0 Sm


where Si is a 1 × 1 or 2 × 2 matrix.1 The eigenvalues of A are the eigenvalues of

the Si.

This algorithm works for three reasons. First,

Q−1
k AkQk = Q−1

k (QkRk)Qk = (Q−1
k Qk)(RkQk) = Ak+1,

so Ak is similar to Ak+1. Because similar matrices have the same eigenvalues, Ak

has the same eigenvalues as A. Second, each iteration of the algorithm transfers

some of the “mass” from the lower to the upper triangle. This is what makes

A0, A1, A2, . . . converge to a matrix S which has the described form. Finally, since

S is block upper triangular, its eigenvalues are just the eigenvalues of its diagonal

blocks (the Si).

1If S is upper triangular (i.e., all Si are 1×1 matrices), then S is the Schur form of A. If some
Si are 2× 2 matrices, then S is the real Schur form of A.

9

A 2×2 block will occur in S when A is real but has complex eigenvalues. In this

case, the complex eigenvalues occur in conjugate pairs, each pair corresponding to

a 2× 2 block on the diagonal of S.

Hessenberg Preconditioning

Often, we “precondition” a matrix by putting it in upper Hessenberg form before

passing it to the QR algorithm. This is always possible because every matrix is

similar to an upper Hessenberg matrix (see Lab ??). Hessenberg preconditioning is

done for two reasons.

First, the QR algorithm converges much faster on upper Hessenberg matrices

because they are already close to triangular matrices.

Second, an iteration of the QR algorithm can be computed in O(n2) time on an

upper Hessenberg matrix, as opposed to O(n3) time on a regular matrix. This is

because so many entries of an upper Hessenberg matrix are 0. If we apply the QR

algorithm to an upper Hessenberg matrix H, then this speed-up happens in each

iteration of the algorithm, since if H = QR is the QR decomposition of H then RQ

is also upper Hessenberg.

Problem 5. Write a function that implements the QR algorithm with Hes-

senberg preconditioning as described above. Do this as follows.

1. Accept a matrix A, a number of iterations niter, and a tolerance tol.

2. Put A in Hessenberg form using la.hessenberg().

3. Compute the matrix S by performing the QR algorithm niter times.

Use the function la.qr() to compute the QR decomposition.

4. Iterate through the diagonal of S from top to bottom to compute its

eigenvalues. For each diagonal entry,

(a) If this is the last diagonal entry, then it is an eigenvalue.

(b) If the entry below this one has absolute value less than tol, assume

this is a 1× 1 block. Then the current entry is an eigenvalue.

(c) Otherwise, the current entry is at the top left corner of a 2 ×
2 block. Calculate the eigenvalues of this block. Use the sqrt

function from the scimath library to find the square root of a

negative number. You can import this library with the line from

numpy.lib import scimath.

5. Return the (approximate) eigenvalues of A.

10 Lab 1. Least squares and Eigenvalues

You can check your function on the matrix
4 12 17 −2

−5.5 −30.5 −45.5 9.5

3. 20. 30. −6.

1.5 1.5 1.5 1.5

 ,

which has eigenvalues 1+2i, 1−2i, 3, and 0. You can also check your function

on random matrices against la.eig().

The QR algorithm as described in this lab is not often used. Instead, modern

computer packages use the implicit QR algorithm, which is an improved version of

the QR algorithm.

Lastly, iterative methods besides the power method and QR method are often

used to find eigenvalues. Arnoldi iteration is similar to the QR algorithm but ex-

ploits sparsity. Other methods include the Jacobi method and the Rayleigh quotient

method.

	Least squares and Eigenvalues

