
Lab 1

Image Compression
(SVD)

Lab Objective: Learn how to compute the compact SVD and explore the SVD

as a method of image compression.

The theoretical use of the Singular Value Decomposition or SVD has long been

appreciated. In fact, the idea of a canonical way of decomposing a matrix was so

alluring that the SVD was independently discovered by at least four people through

use of both integral equations and systems of linear equations.

However, it wasn’t until Erhard Schmidt showed how the SVD could be a compu-

tational tool for providing low-rank approximations that the practical applications

became apparent. Since Schmidt’s work, further devolpments have confirmed the

importance of the SVD in both computational and theoretical applications.

Computing the SVD

The Singular Value Decomposition separates a m × n matrix A into two unitary

matrices and a diagonal matrix. This takes the form of

A = UΣV H

where U and V are square and unitary of sizes m and n respectively, and Σ is

diagonal and of size m × n. The values of Σ are the singular values of A, and are

the square root of the eigenvalues of AHA. Commonly the singular values are listed

in decreasing order. Thus we get

Σ = diag(σ1, σ2, . . . , σn)

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the singular values of A.

The compact SVD is where the r column vectors of U and the r row vectors

of V are calculated, cooresponding to the r nonzero singular values. We lose the

decomposition of the nullspace of A, but can still regain the full matrix A. It takes

the form A = U1Σ1V
H
1 where U1 is m × r, Σ1 is r × r and diagonal, and V H1 is

r × n.

The truncated SVD is similar to the compact SVD, but instead of taking all the

nonzero singular values, we only take the k largest. While this saves space, it means

1



2 Lab 1. SVD

that we cannot recover the whole matrix. Instead we have an approximation that

shares the largest k singular values. We end up with Â = UkΣkV
H
k where Â is an

approximation of A, Uk is m× k, Σ is k × k and diagonal, and V Hk is k × n.

The only difference in computing the compact SVD verses the truncated SVD

is the number of singular values we keep. If we keep all the nonzero singular values,

it is the compact SVD. If we only keep some of the nonzero singular values, then it

is the truncated SVD.

To compute the compact or truncated SVD:

� The singular values of A are the square root of the eigenvalues of AHA and

are sorted in descending order. These are the diagonal of Σ. For the compact

SVD, keep all nonzero singular values. For the truncated SVD, keep the first

k.

� The columns of V are the eigenvectors of AHA, where the ith column matches

the ith singular value.

� The columns of U are Ui = 1
σi
AVi.

Problem 1. Write a function truncated_svd that accepts a matrix A and an

optional integer k = None. If k is None, calculate the compact SVD. If k is

an integer, calculate the truncated SVD. Since the only difference between

these two processes is the number of singular values we keep, we only need

to write one function.

1. Find the eigenvalues and eigenvectors of AHA.

2. Find the singular values of A.

3. Sort the singular values and only keep the greatest k.

4. Calculate V .

5. Calculate U .

Check your function by calculating the compact SVD and seeing if U1Σ1V
H
1 =

A using np.allclose().

Hint: While calculating the SVD, you will need to sort the eigenvalues

while keeping track of their associated eigenvectors. To accomplish this, use

np.argsort to generate a mask that can be used to order the eigenvalues. The

same mask can be used to order the columns of a matrix. Also, an efficient

and concise way to keep the nonzero eigenvalues is to use fancy indexing.

See the NumPy and SciPy lab for more information on np.argsort and fancy

indexing.

If A is full rank and square, it has n nonzero singular values and this process

gives us the full SVD. If A is not full rank or not square, we can compute the first r



3

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(a) The unit circle, S, with two unit vectors.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(b) V HS

4 3 2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c) ΣV HS

4 2 0 2 4
4

3

2

1

0

1

2

3

4

(d) UΣV HS

Figure 1.1: Each step in transforming the unit circle and two unit vectors using the

matrix A.

columns of U and V , where r is the number of nonzero singular values, in this way.

To find the rest of the SVD, we can use Gram-Schmidt orthonormalization.

More specifically, let r be the number of nonzero singular values. If r < n then

we only have r eigenvectors to fill V , which is a n×n matrix. We find the remaining

columns of V by using Gram-Schmidt orthonormalization to finish the basis for n-

space. Similarly, if r < m then we only have r columns of U so we use Gram-Schmidt

orthonormalization to finish the basis for m-space. The compact SVD does not have

this problem because U1 and V1 only have r columns, the remaining columns are

the decomposition of the null spcae of the matrix, and are not included. In this lab

we calculate the compact SVD for simplicity.

Visualizing the SVD

Recall that a matrix is one way to express a linear transformation. A m×n matrix

sends points from Rn to Rm. These transformations are a mix of rotations and

rescalings. The SVD decomposes these transformations into their individual parts.

V H is a rotation, Σ a rescaling along the principal axes, and U is another rotation.



4 Lab 1. SVD

Problem 2. If S are the points on the unit circle, UΣV HS is equivalent to

AS where UΣV H is the SVD of A. Using either your SVD from problem 1

or from scipy.linalg.svd, plot each part of the transformation of the matrix

A =

(
3 1

1 3

)
. (1.1)

Your solution should show S, V HS, ΣV HS, and UΣV HS. Since A is

square and full rank, the compact SVD is equal to the full SVD. You solution

should look like Figure 1.1

The circle.npz dataset contains a set of points on the unit circle and a

set of unit vectors. You can access the circle by loading the "circle" file. You

can access the unit vectors by loading the "unit_vectors" file. These points

are stored as a numpy array of points in R2 with the first row being all the

x-coordinates and the second row being all the y-coordinates.

Image Data Compression

In this lab, we explore how the SVD can be used to compress image data. Recall

that an image is simply a matrix where each position is the color value for the pixel

in that position. The SVD lets us choose how much information to keep, and what

information is most important. Larger eigenvalues correspond to columns of U and

V that contain more information, while smaller eigenvalues correspond to less im-

portant columns. This idea is used in many areas of applied mathematics including

signal processing, statistics, semantic indexing (search engines), and control theory.

Low rank data storage

If the rank of a given matrix is significantly smaller than its dimensions, the compact

SVD offers a way to store A with less memory. Without the SVD, an m×n matrix

requires storing mn values. By decomposing the original matrix into the compact

SVD, U1, Σ1 and V1 together require mr+ r+nr values. Thus if r is much smaller

than both m and n, we can obtain considerable efficiency. For example, suppose

m = 100, n = 200 and r = 20. Then the original matrix would require storing

20, 000 values whereas the compact SVD only requires storing 6020 values.

Low rank approximation

The truncated SVD is useful in approxiamating a matrix with one of lower rank.

By only keeping the first k singular values, we can create an approximation Â =

UkΣkV
H
k .

The scipy.linalg module has a convenient method to calculate the SVD of a

given matrix. We can use this method to create a lower-rank approximation of a

given matrix. Execute the following code.



5

>>> import numpy as np

>>> import scipy.linalg as la

>>> A = np.array([[1,1,3,4], [5,4,3,7], [9,10,10,12], [13,14,15,16], ←↩
[17,18,19,20]])

>>> U,s,Vh = la.svd(A, full_matrices=False)

In that last line of code, we included the keyword argument full_matrices=False to

calculate the compact SVD rather than the full SVD. The arrays U and Vh correspond

to the matrices U1 and V H1 discussed earlier in the lab. The array s simply gives the

nonzero singular values of the matrix A, and we can find the rank of A by inspecting

the number of entries in s (in this example, we have a rank 4 matrix).

Next, we calculate a rank 3 approximation. We take the first three singular

values and the first three columns of U and first three rows of Vh.

We omit the last singular value from the calculation along with the last column

of U and last row of Vh.

>>> S = np.diag(s[:3])

>>> Ahat = U[:,:3].dot(S).dot(Vh[:3,:])

>>> la.norm(A-Ahat)

Note that Â is “close” to the original matrix A, but that its rank is 3 instead of 4.

More precisely, Â is the best rank 3 approximation of A with respect to both the

induced 2-norm and the Frobenius norm.

Problem 3. Write a function svd_approx that takes as input a matrix A and

a positive integer k and returns the best rank k approximation to A with

respect to the induced 2-norm.

Application to Imaging

Sometimes there is not enough available bandwidth to transmit a full resolution

photograph. You aim to reduce the amount of data that needs to be transmitted

from a remote location such that loss of image detail is minimal, but the amount of

data that needs to be sent has reduced as much as possible. In Figure 1.2 we present

an image and a plot of its singular values. Matrix rank is on the x-axis and the

singular values are on the y-axis. Note that the SVD orders the singular values from

greatest to least. The more singular values we keep, the closer the approximation

but the more data we have to store. By looking at the graph in Figure 1.2b we can

have a rough idea of how many singular values we need to preserve to have a good

approximation of A. The matrix rank of the image is 670. However, we could easily

approximate the image using only the first half of the singular values as the plot

shows that all the values after are miniscule.

In Figure 1.3, we can see different rank approximations of the image in Figure

1.2.

To read in an image, convert it to black and white, and show it, use the code

below. Then use your function from Problem 3 to calculate an approximation.



6 Lab 1. SVD

(a) NGC 3603 (Hubble Space Telescope). (b) Singular values from greatest to smallest.

Figure 1.2: An image and its singular values.

(a) Rank 1 (b) Rank 14

(c) Rank 27 (d) Rank 40

Figure 1.3: Different rank approximations for SVD based compression. Notice that

higher rank is needed to resolve finer detail.

>>> import matplotlib.pyplot as plt

>>> from matplotlib import cm

>>> X = plt.imread('hubble_image.jpg')[:,:,0].astype(float)

>>> X.nbytes #number of bytes needed to store X

>>> plt.imshow(X, cmap=cm.gray)

>>> plt.show()

Recall that the error between the best rank s approximation Âs to A with respect



7

to the induced 2-norm is given by

‖A− Âs‖2 = σs+1,

where σs+1 is the (s+ 1)-th singular value of A.

Problem 4. Using your svd_approx function from Problem 3, write a func-

tion lowest_rank_approx that takes as input a matrix A and a positive number

e and returns the lowest rank approximation of A with error less than e (with

respect to the induced 2-norm).

Problem 5. Using your svd_approx function from Problem 3, write a func-

tion compress_img that accepts two parameters filename and k. Your function

should plot the original image and the best rank k approximation of the

original image. While your svd_approx function worked for grayscale images,

your compress_img function should work on color images. Your output should

be similar to Figure 1.4.

At times, plt.imshow does not behave as expected when being passed RGB

values between 0 and 255. It behaves much better when being passed num-

bers between 0 and 1. Additionally, since the SVD provides an approxima-

tion, it is possible that the SVD will generate values slightly outside the valid

range of RGB values. To remedy this, use fancy indexing as discussed in the

NumPy and SciPy lab.

Figure 1.4: Correct output for the best rank 20 approximation.


	SVD

