
Lab 1

Facial Recognition Using
Eigenfaces

Lab Objective: Use the singular value decomposition to build a facial recognition

system.

Suppose we have a large database containing images of human faces. We would

like to identify people by matching their pictures to those in the database. This

task is called facial recognition.

Facial recognition is important in law enforcement, as well as other situations.

For example, facial recognition can be combined with video surveillance to identify

when a person is not authorized to be in a location.

Humans can easily compare two face images and determine whether they belong

to the same person, but automating this process is more challenging. One technique

for automated facial recognition uses eigenfaces.

Load the Data

Eigenfaces are an efficient way to store and query a database of face images. As the

name suggests, this method uses eigenvectors of matrices related to the collection of

face images. Essentially, the method of eigenfaces projects face images to a lower-

dimensional subspace in a way that preserves their distinguishing characteristics.

In the lower-dimensional subspace, comparing face images is much faster.

Recall that a digital image may be stored as an m×n array of pixel intensities.

In this lab, we will store the images as mn-vectors by concatenating the rows of the

m× n arrays.

Problem 1. The problems in this lab will help you write a class FacialRec

to perform facial recognition. First we need to get a database of face images.

1. Download the faces94 face image database found at http://cswww.

essex.ac.uk/mv/allfaces/faces94.html and extract the files. You

should now have a directory named “faces94” which contains pho-

tographs of many people, organized into folders by person.

1

http://cswww.essex.ac.uk/mv/allfaces/faces94.html
http://cswww.essex.ac.uk/mv/allfaces/faces94.html

2 Lab 1. Facial Recognition Using Eigenfaces

With this directory we can begin to write our FacialRec class. This class is

outlined below.

import numpy as np

from scipy import linalg as la

from os import walk

from scipy.ndimage import imread

from matplotlib import pyplot as plt

import matplotlib.cm as cm

from random import sample

class FacialRec:

##########Members##########

F, mu, Fbar, and U

###########################

def __init__(self,path):

self.initFaces(path)

self.initMeanImage()

self.initDifferences()

self.initEigenfaces()

def initFaces(self, path):

self.F = getFaces(path)

def initMeanImage(self):

pass

def initDifferences(self):

pass

def initEigenfaces(self):

pass

def project(self, A, s=38):

pass

def findNearest(self, image, s=38):

pass

The function getFaces() should construct a database of face images by

selecting exactly one face image for each person in the directory. It should

return an array whose columns are the selected face images. One implemen-

tation of this function is found at the end of this lab.

resume Initialize a FacialRec instance with the command facialRec = FacialRec

("./faces94"). You may have to replace the parameter "./faces94"

with the location of the directory faces94 on your machine. Check

that facialRec.F is a 360000 × 153 array. The columns of this array

are 153 face images of 153 different people.

Shift By the Mean

The facial recognition algorithm is more robust if we first shift by the mean. When

we shift a set of data by the mean, the distinguishing features are exaggerated.

Therefore, in the context of facial recognition, shifting by the mean accentuates

the unique features of the face. Suppose we have a collection of k face images

represented as vectors f1, f2, . . . , fk of length mn. Define the mean face µ to be the

3

Figure 1.1: The mean face.

Figure 1.2: Three mean-shifted faces from the dataset.

average of the fi:

µ =
1

k

k∑
i=1

fi.

Problem 2.

1. Implement the method FacialRec.initMeanImage() as follows.

def initMeanImage(self):

self.mu = # Compute the mean face of the images in self.F

This can be done in one line using np.mean and specifying the correct

axis.

2. Plot the mean face. The function show() at the end of this lab will plot

a flattened grayscale image. Your mean face should match Figure 1.1.

For each i = 1, . . . , k, define f̄i := fi − µ. The mean-shifted face vector f̄i is the

deviation of the i-th face from the mean, and thus captures the unique features of

the face. Now form the mn × k matrix F̄ whose columns are given by the mean-

4 Lab 1. Facial Recognition Using Eigenfaces

shifted face vectors, i.e.

F̄ =
[
f̄1 f̄2 · · · f̄k

]
.

Problem 3.

1. Implement the method FacialRec.initDifferences() to compute F̄ as fol-

lows.

def initDifferences(self):

self.Fbar = # Compute the mean-shifted face vectors Fbar

This can be done in one line using array broadcasting.

2. Plot a mean-shifted face. Plotting the 28th mean-shifted face, i.e. the

28th column of the matrix Fbar, should match the first face in Figure

1.2.

Project to a Subspace

Now suppose we have a new face vector g. The closest face image to g should be

the vector f̄i that minimizes ‖ḡ− f̄i‖2, where ḡ = g−µ. Unfortunately, computing

‖ḡ− f̄i‖2 for each i is computationally intractable when the length mn of the vectors

is large. Since a low-resolution photo may easily have 100× 100 = 10, 000 pixels, in

practice mn is very large indeed.

Here is the trick: instead of computing in the mn-dimensional space of all pos-

sible images, we will compute in a lower-dimensional subspace. We could start by

using the subspace spanned by the vectors f̄1, . . . f̄k, which is at most k-dimensional.

Unfortunately, in practice k is still to large for this subspace to be computationally

efficient.

Therefore, we want to project to a subspace of f̄1, . . . f̄k in a way that retains as

much information about the f̄i as possible. Mathematically, we want to find the s-

dimensional subspace of span{f̄1, . . . f̄k} that is closest to the f̄i in the least-squares

sense. In a minute, we will prove that the SVD of F̄ (whose columns are f̄1, . . . f̄k)

solves this problem. But first, let us summarize how the solution works.

Let UΣV T be an SVD of F̄ with ui the columns of U . Then the “best” s-

dimensional subspace for approximating span{f̄1, . . . f̄k} is the span of u1, . . . ,us.

The matrix for this projection is Ps = UsU
T
s where Us = [u1 . . . us].

Because the vectors ui are eigenvectors of F̄ F̄T , we call them eigenfaces. There-

fore, the best s-dimensional subspace for solving the facial recognition problem is

exactly the span of the first s eigenfaces.

The Proof: SVD as a Least Squares Solution

Theorem 1.1. Let f1, . . . , fk be vectors on Rmn, and let F̄ = [f̄1 . . . f̄k]. Suppose

5

UΣV T is an SVD for F̄ . Then the s-dimensional subspace that solves the least

squares problem for f1, . . . , fk is the span of the first s columns of U . If Us is the

first s columns of U , then the matrix UsU
T
s is projection onto this subspace.

Proof. We seek a rank-s projection matrix Ps so that
∑k

i=1 ‖Psf̄i−f̄i‖22 is minimized—

i.e., the sum of the squares of the “errors” is minimal when we project f̄i via Ps.

But minimizing this quantity is the same as minimizing its square, which happens

to equal the Frobenius norm of PsF̄ − F̄ . Written mathematically,

inf
rank(Ps)=s

k∑
i=1

‖Psf̄i − f̄i‖22 = inf
rank(Ps)=s

(
k∑

i=1

‖Psf̄i − f̄i‖22

)2

= inf
rank(Ps)=s

‖PsF̄ − F̄‖F .

Now let UΣV T be an SVD of F̄ with ui the columns of U , vi the columns of

V , and σi the singular values of F̄ . If Ps =
∑s

i=1 uiu
T
i , then

PsF̄ =

(
s∑

i=1

uiu
T
i

) k∑
j=1

σjuiv
T
i

 =

s∑
i=1

k∑
j=1

σjuiu
T
i ujv

T
j

=

s∑
i=1

k∑
j=1

σjuiδijv
T
j =

s∑
i=1

σiuiv
T
i .

In fact, the Schmidt-Eckart-Young-Mirsky Theorem from Lab ?? tells us that

X =
∑s

i=1 σiuiv
T
i is exactly the rank-s matrix that minimizes ‖X − F̄‖F . Since

PsF̄ will always have rank s or less, the projection Ps =
∑s

i=1 uiu
T
i is the one we

seek. If we let Us = [u1 . . . us], then we may write Ps = UsU
T
s . Notice that Ps is

projection onto the subspace spanned by the columns of Us.

Problem 4.

1. Implement the method FacialRec.initEigenfaces() as follows.

def initEigenfaces(self):

self.U, s, Vt = # Compute the SVD of Fbar

This can be done in one line with the function linalg.svd(). Because we

will only use the first few columns of U , specify the keyword parameter

full_matrices=False to compute only the compact SVD.

2. Plot the first eigenface (i.e. the first column of U). It should match the

first eigenface shown in Figure 1.3.

6 Lab 1. Facial Recognition Using Eigenfaces

Figure 1.3: The top three eigenfaces.

Change Basis

It does us no good to project all our vectors into an s-dimensional space if we still

store them as vectors in Rnm. Instead, we must store our face vectors in terms of

the columns of Us. This way, each vector is a length-s array in NumPy, instead of

a length-mn array.

The change-of-basis matrix is UT
s , so UT

s P̂s = UT
s UsU

T
s = UT

s . Thus we can

project into the subspace and change basis by multiplying by UT
s . To change back

to the full mn-vector, multiply by Us.

Problem 5.

1. Implement the method FacialRec.project(s) as follows.

def project(self,s):

project A onto s-dimensional subspace and return A_s.

2. (Optional) Let face be the first mean-shifted face from the database

(the first column of facialRec.Fbar). Do the following:

(a) Project face onto the subspace spanned by the first 75 eigenfaces.

(b) Change basis back to the standard basis on Rmn.

(c) Add back the mean face facialRec.mu.

(d) Plot the resulting image.

Your image should match Figure 1.4e.

Recognizing Faces

Finally, we are ready to identify which mean-shifted image f̄i is closest to an inputed

image, ḡ. We begin by projecting all vectors to some s-dimensional subspace and

writing them in terms of an orthonormal basis for that subspace. This is accom-

7

(a) 5 eigenfaces, about

1/32 of the total.

(b) 9 eigenfaces, or 1/16 of

the total.

(c) 19 eigenfaces, about

1/8 of the total.

(d) 38 eigenfaces, about

1/4 of the total.

(e) 75 eigenfaces, about

1/2 of the total.

(f) All 153 of the eigen-

faces.

Figure 1.4: Image rebuilt with various numbers of eigenfaces. The image is some-

what recognizable when it is reconstructed with only 1/8 of the eigenfaces.

plished with multiplication by UT
s :

f̂i = UT
s (fi − µ) ĝ = UT

s (g − µ).

Next, we compute which f̂i is closest to ĝ. Since the columns of Us are an

orthonormal basis, we get the same result doing the computation in this basis as

we would in the standard Euclidean basis. Define

i∗ = argmini‖f̂i − ĝ‖2.

Then the i∗-th face image is the best match for g.

Problem 6.

1. Implement the method FacialRec.findNearest() as follows.

def findNearest(self, image, s=38):

Fhat = # Project Fbar, producing a matrix whose columns are the ←↩
f-hat defined above

ghat = # Shift 'image' by the mean and project, producing g-hat ←↩
as defined above

8 Lab 1. Facial Recognition Using Eigenfaces

for both Fhat and ghat, use your project function from the ←↩
previous problem

Return the index that minimizes ||fhat_i - ghat||_2.

The functions np.linalg.norm() and np.argmin() will be useful for the last

line. When using np.linalg.norm, make sure you indicate the correct

axis.

2. Test your facial recognition system on faces selected randomly from

the faces94 dataset. The function sampleFaces(n_tests, path) at the end

of this lab will build an array of n_tests random faces from the faces94

database.

Plot the random face beside the face returned by your facial recognition

code to see if your system is accurately recognizing faces. The function

show2() at the end of this lab will plot two face vectors side-by-side.

By this point, you have created a basic facial recognition system. We can extend

the system to detect when a face doesn’t match anything currently in the database,

and then add this new face into the database. We can also make the system more

robust by including multiple pictures of the same face with different expressions

and lighting conditions.

Although there are other approaches to facial recognition that utilize more com-

plex techniques, the method of eigenfaces remains a wonderfully simple and effective

solution, illustrating another application of the singular value decomposition.

Appendix: Helper Code

This section contains some functions to help you code up the facial recognition class

outlined in the problems of this lab.

def getFaces(path="./faces94"):

"""Traverse the directory specified by 'path' and return an array containing

one column vector per subdirectory.

For the faces94 dataset, this gives an array with just one column for each

face in the database. Each column corresponds to a flattened grayscale image.

"""

Traverse the directory and get one image per subdirectory.

faces = []

for (dirpath, dirnames, filenames) in walk(path):

for f in filenames:

if f[-3:]=="jpg": # only get jpg images

load image, convert to grayscale, flatten into vector

face = imread(dirpath+"/"+f).mean(axis=2).ravel()

faces.append(face)

break

put all the face vectors column-wise into a matrix.

F = np.array(faces).T

9

return F

def show(im, w=200, h=180):

"""Plot the flattened grayscale image 'im' of width 'w' and height 'h'."""

plt.imshow(im.reshape((w,h)), cmap=cm.Greys_r)

plt.show()

def sampleFaces(n_tests,path = "./faces94")

"""Return an array containing a sample of n_tests images contained

in the path as flattened images in the columns of the output.

"""

files = []

for (dirpath, dirnames, filenames) in walk(path):

for f in filenames:

if f[-3:]=="jpg": # only get jpg images

files.append(dirpath+"/"+f)

#Get a sample of the images

test_files = sample(files, n_tests)

#Flatten and average the pixel values

images = np.array([imread(f).mean(axis=2).ravel() for f in test_files]).T

return images

def show2(im1, im2, w=200, h=180):

"""Convenience function for plotting two flattened grayscale images of

the specified width and height side by side.

"""

plt.subplot(121)

plt.imshow(im1.reshape((w,h)), cmap=cm.Greys_r)

plt.subplot(122)

plt.imshow(im2.reshape((w,h)), cmap=cm.Greys_r)

plt.show()

	Facial Recognition using Eigenfaces

