
Lab 14

Data Visualization

Lab Objective: Use data visualizations to explore data and communicate e↵ec-
tively to others.

The purpose of visualization is insight, not pictures. —Card, Mackinlay, & Shneider-
man (after Hamming)

The ability to take data—to be able to understand it, to process it, to extract value from

it, to visualize it, to communicate it—that’s going to be a hugely important skill in the

next decades,... because now we really do have essentially free and ubiquitous data. So the

complimentary scarce factor is the ability to understand that data and extract value from

it. —Hal Varian (Google’s Chief Economist)

What is Data Visualization?

Data visualizations (or graphs) are used to understand and explore data as well as commu-
nicate results to others. Often data is more easily interpreted or understood in graphical
format than as a list of numbers or data points.

Types of Visualizations

Here are some of the most useful types of data visualizations. We explain each of these in
more detail below.

1. A bar chart is generally the preferred method for displaying a small (discrete) col-
lection of one-dimensional data points. Each discrete data point is represented as a
bar whose length is determined by the value of the data (see Figure 14.1).

2. A histogram is a special type of bar graph where the length of each bar corresponds
to the number of data points in a certain range (sometimes called a bin). Histograms
are useful for revealing statistical distributions (see Figure 14.11).

3. A line plot plots (x, y)-pairs as points and connects them with a curve. You should
use a line plot for graphing continuous functions or when there is a natural order to
your two-dimensional data—for example when the data is a time series (a sequence
of values over time).

143

144 Lab 14. Data Visualization

4. A scatter plot plots (x, y) tuples as discrete points. This should be used instead of
a line plot when the data is two-dimensional but has no natural order.

A scatter plot can reveal correlation (or lack thereof) between x and y.

5. Three-dimensional data can be displayed on a two-dimensional page with a contour

plot. This draws lines in the plane where the third value is constant—like a topo-
graphical map. Filling in the contours with successive colors gives a heat map (see
Figure 14.8).

Three-dimensional data can also be plotted as a surface in 3-space, but it is often
di�cult to find a view where none of the important features of the data are obscured.
A contour plot or a heat map can help avoid this problem and is often easier for the
viewer to decode.

Bar Charts

Bar charts are best for relatively small sets of discrete, one-dimensional data. They are
usually best presented with the bars running horizontally because when the bars are verti-
cal the labels tend to run together. The other possible solution to that problem—making
the text vertical—is harder to read (see Figure 14.1).

Figure 14.1: Bar Charts. Note how the good example in the upper left is easier to
use for comparison than the upper right, and easier to read than the bottom two
charts. Also, the labels in the bottom left are overlapping and the labels in the
bottom right are vertical, making it hard to read.

You can create a bar chart in matplotlib with the commands plt.bar() and plt.barh().

This code created the top right bar chart.

labels = 'Spam', 'Eggs', 'Ham', 'Sausage', 'Bacon', 'Baked beans','Lobster -
thermidor'

145

val = [10, 11, 18, 19, 20, 21, 22] # the bar lengths

pos = np.arange(7)+.5 # the bar centers on the y axis

plt.barh(pos,val, align='center')
plt.yticks(pos, labels[::-1])

plt.show()

The data in a bar chart should generally be sorted in some natural way, based on
the intended use. If the chart will be used to compare the value of di↵erent data points,
we usually sort by size; if the chart will be used for looking up specific values, the data
could be sorted alphabetically or in some other logical order that facilitates finding specific
values.

As a general rule, bars should always start at zero because people are conditioned to
expect that. Failing to do this can be confusing or misleading.

Problem 1. The following table provides average heights of men and women in
17 countries. Order the data and plot a horizontal bar chart.

Country Average Male Height Average Female Height

Austria 179.2 cm (5 ft 7.5 in) 167.6 cm (5 ft 6 in)
Bolivia 160.0 cm (5 ft 3 in) 142.2 cm (4 ft 8 in)
England 177.8 cm (5 ft 10 in) 164.5 cm (5 ft 5 in)
Finland 178.9 cm (5 ft 10.5 in) 165.3 cm (5 ft 5 in)
Germany 178 cm (5 ft 10 in) 165 cm (5 ft 5 in)
Hungary 176 cm (5 ft 9.5 in) 164 cm (5 ft 4.5 in)
Japan 172.5 cm (5 ft 7.5 in) 158 cm (5 ft 2 in)
North Korea 165.6 cm (5 ft 5 in) 154.9 cm (5 ft 1 in)
South Korea 170.8 cm (5 ft 7 in) 157.4 cm (5 ft 2 in)
Montenegro 183.2 cm (6 ft 0 in) 168.4 cm (5 ft 6.5 in)
Norway 182.4 cm (6 ft 0 in) 168 cm (5 ft 6 in)
Peru 164 cm (5ft 4.5 in) 151 cm (4 ft 11.5 in)
Sri Lanka 163.6 cm (5 ft 4.5 in) 151.4 cm (4 ft 11.5 in)
Switzerland 175.4 cm (5 ft 9 in) 164 cm (5 ft 4.5 in)
Turkey 174 cm (5 ft 8.5 in) 158.9 cm (5 ft 2.5 in)
U.S. 176.1 cm (5 ft 9.5 in) 162.1 cm (5 ft 4 in)
Vietnam 165.7 cm (5 ft 5 in) 155.2 cm (5 ft 1 in)

Histograms

A histogram depicts a distribution of numerical data. To construct a histogram of several
one-dimensional data points, we divide the data into ”bins” based on what range they lie
in, and then we plot a bar whose height corresponds to the number of points in the bin.
Histograms can give a clear view of the way data is distributed, but sometimes changing
the size and position of the bins can change the picture substantially. You can create a
histogram in matplotlib with the command plt.hist().

When plotting histograms, it can sometimes be useful to include reference lines. A
nice way to do this without cluttering the figure is to make the reference lines white. You
can do this in matplotlib with the command plt.grid(True, color='w',linestyle='-').

from numpy.random import randn

from matplotlib import pyplot as plt

146 Lab 14. Data Visualization

Figure 14.2: Histogram and Histogram with Reference Lines

data = randn(75) + randn(75) + randn(75) + randn(75)

plt.hist(data)

plt.grid(True, color = 'w', linestyle = '-')

plt.title("histogram")

plt.show()

Problem 2. Using 1000 random numbers from a normal distribution,

from numpy.random import normal

normal_numbers = normal(size=1000)

plot a histogram with white reference lines. Do this for 20 bins, 10 bins, 5 bins,
and 3 bins.

Line Plots

Line plots should not be used for data that is one-dimensional or is two-dimensional with
no natural ordering or progression because it gives the false impression that there is an
order or progression when none exists (see Figure 14.4).

Recall that you can create a line plot in matplotlib with the command plt.plot().

When plotting line graphs in matplotlib, the default line width is usually too thin. It
will help your reader (or you) if you set the line width to 2 or more with the argument
lw=2 (See Figure 14.3).

Problem 3. Using 1000 data points, plot the equation

y = x2 sin(x),

x 2 [0, 100].

It should look like Figure 14.5.

147

Figure 14.3: Line Plot. The left plot is plotted with lw=1 whereas the right plot is
plotted with lw=2. Notice that the right plot is better because it is easier to see the
line.

Figure 14.4: Line plot. Notice that this graph appears to show that the x-values
are ordered. However, in reality, they are unordered. This is a bad practice and
misrepresents the data.

Scatter Plots

Scatter plots graph (x, y) tuples and should be used instead of line plots when the data is
two-dimensional but has no natural order.

You can create a scatter plot in matplotlib with the command plt.scatter().

Figure 14.6 displays two scatter plots, the first appearing to have no strong correlation
and the second a strong correlation. However, the same data is being plotted and the only
di↵erence is the scale and window size. Manipulating these can change your interpretation
and should be done with careful consideration.

Problem 4. Plot the average heights of men (y) against women (x) using the data
from Problem 1. Zoom in and out to see what di↵erence that makes.

148 Lab 14. Data Visualization

Figure 14.5: Solution to Problem 3

Figure 14.6: Scatter Plots. The data in both plots are the same, but note how in
the first we see little correlation compared to the second. This is solely an artifact
of the scale of the plot. Keep this in mind when you make scatter plots.

Contour Plots and Heat Maps

Three-dimensional data can be displayed on a two-dimensional page with a contour plot.
This draws lines in the plane where the third value is constant—like a topographical map.

You can create a contour plot in matplotlib with plt.contour().

Filling in the contours with successive colors gives a heat map. Note that the default
color map for matplotlib is the rainbow color map. This is a poor choice for a heat map or
colored contour map because people do not naturally interpret one color to be greater than
another. To solve this problem in matplotlib, use the argument cmap='NAME_OF_COLORMAP'
where NAME_OF_COLORMAP is one of matplotlib’s sequential or diverging colormaps like afmhot.

This code corresponds to the figure on the top right of the contour maps.

import numpy as np

from matplotlib import pyplot as plt

n=400

xran = np.linspace(-1.5,1.5,n)

yran = np.linspace(-1.5,1.5,n)

X, Y = np.meshgrid(xran,yran)

F = Y**2 - X**3 + X**2

plt.contourf(X, Y, F, [-2,-1,0.0001,1,2,3,4,5] ,cmap=plt.get_cmap('afmhot'))

149

Figure 14.7: Contour Maps. The top left is a good contour map and the top right
is a good heat map, and the bottom two are inferior because of bad color choices.
The top right corresponds to the code below.

Two sequential colormaps are afmhot and cool. Two diverging colormaps are seismic

and bwr. These colormaps along with their color scheme can be found on http://

matplotlib.org/examples/color/colormaps_reference.html.

Problem 5. Using 400 intervals, plot a filled contour map of

z = sin(x) + sin(y),

x 2 [0, 12⇡], y 2 [0, 12⇡].

Be sure to use an appropriate color map.

You can also create a pseudocolor plot in matplotlib with the plt.pcolormesh() com-
mand.

Finally, three-dimensional data can also be plotted as a surface in 3-space, but it is
often di�cult to find a view where none of the important features of the data are obscured.
A heatmap can help avoid this problem and is often easier for the viewer to decode (see
Problem 7).

Exploring Data with Visualizations

When you visualize data you may notice trends that are not apparent from the numbers.
The following problem is a famous example of this phenomenon.

150 Lab 14. Data Visualization

Figure 14.8: Both of these pseudocolor plots depict the function z = sin(x) sin(y)
on the domain [�1, 4]⇥ [�4, 1]. The plot on the left uses a rainbow gradient, which
is pretty to look at, but whose choice of colors has no meaningful relationship to the
data. The plot on the right uses the color map called afmhot, which has the important
benefit that the lighter colors are naturally associated with higher values, while the
darker colors are naturally associated with lower values.

Problem 6. The data sets I-IV in Table 14.1 are known as Anscombe’s quartet.
Each data set has identical statistical properties. In each case,

• The mean of x is 9 and the mean of y is 7.5.

• The variance of x is 11 and the variance of y is 4.127.

• The correlation between x and y is .816.

• The linear regression line is y = 3 + 5x.

Plot each data set. What do you notice?

I II III IV
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Table 14.1: These four sets of data are known as Anscombe’s quartet.

151

As Problem 6 demonstrates, a picture can quickly reveal properties of the data that
are di�cult to see in a list of numbers.

The Iterative Process of Exploratory Visualization

Understanding a data set through visualization is often an iterative process. We start
with an initial visualization—usually a broad overview. Examining the result leads to
observations that provoke questions. We then filter or transform the data and adjust the
visualization based on those questions and observations, and then repeat the process until
we converge on a useful result.

Some of the questions that you should be asking in this iterative process include:

1. Is the data correct and reliable?

2. Are there any clear patterns, trends, or irregularities?

3. Would a di↵erent type of visualization give more information?

4. Is something unusual or interesting going on outside my view?

5. Would filtering the data to look at a particular subset give a more informative
picture?

6. Would a transformation of the data give a more informative picture?

Let’s consider each of these questions in more detail.

1. Data Integrity

Visualization is a powerful way to identify problems with your data set. Ask yourself,
whether the results look like what you expect. Are they the right magnitude? Are there
missing values?

2. Trends, Patterns, and Irregularities

Some patterns you may look for:

1. Are there trends in time (up, down, flat, cyclical)?

2. Does the data look random, cyclical, or patterned?

3. Are there clear correlations between the x- and y-values?

4. Is the trend linear or curved?

5. Do lines intersect, or are they parallel?

6. Is the data symmetric or skewed?

7. What is the variance (wide vs narrow)?

8. Are there clusters and gaps?

9. Is the data dense or sparse?

3. Using Di↵erent Types of Visualization

Data can be visualized using di↵erent types of visualization and is relatively easy to trans-
form.

152 Lab 14. Data Visualization

Figure 14.9: Scale issues. Notice that y-values on the left graph look random.
However, it is clear to see on the right graph that the y-values aren’t as sporadic.

Problem 7. This is an example of a surface that obscures your view:

x = np.linspace(-2*np.pi,2*np.pi,num=400)

y = np.linspace(-2*np.pi,2*np.pi,num=400)

X, Y = np.meshgrid(x,y)

Z = np.exp(np.cos(np.sqrt(X**2 + Y**2)))

fig = plt.figure()

ax = fig.gca(projection='3d')
ax.plot_surface(X,Y,Z)

plt.show()

Change this surface to a heatmap or a contour plot. Return a string of the benefits
of each type of visualization. See the beginning of the lab for how to make a contour
plot.

4. Changing the View

By choosing to plot only a portion of your data, you may be able to focus your attention on
the most relevant data. On the other hand, you may also miss some interesting behavior
in the data you didn’t graph. Figures 14.6 and 14.9 are two such examples.

Another issue to consider is scale. If a number changes from 50,000 to 55,000 over
some period, that increase can appear small or large, depending on where we start the
y-axis and how long we stretch out the x-axis (see Figure ??).

You can modify the scale of an existing plot using plt.yscale() or plt.xscale().

Problem 8. Return to your plot of

y = x2 sin(x)

x 2 [0, 100]

from Problem 3 and plot it a few more times adjusting the scale by setting the

153

y limits to be ±10k for k = 0, 1, 2, 3, 4 by using the command

plt.ylim(lower_limit,upper_limit).

5. Filtering the Data

Sometimes important information about a subset of the data can be obscured by con-
sidering the whole data set. Some information is di�cult to notice when all the data is
combined into one plot. But when the data is divided into subsets, more information can
be gathered. For example, when the height of males and females are plotted for multiple
countries, there may appear to be a large variance. But when males’ heights and females’
heights are isolated, more information about the variance can be deduced.

6. Transforming the Data

Often a transformation of the data can reveal useful information that was previously
hidden.

For example, data that grows very rapidly or that is tightly clustered may be better
visualized by plotting the logarithm of the data, instead of the original data, A log-lin plot
(also called a log plot) is constructed by by taking the logarithm of the y-values of your
data set.

This is easily done in matplotlib with the command plt.semilogy(x,y). The syntax is
the same as plt.plot().

On the left side of Figure 14.10, x14+1 and x13+1 look almost idential. Graphic them
on a log-lin plot (as on the right side of Figure 14.10) makes their di↵erences apparent.
Beware, however, that you should not label the transformed axis with transformed labels,
because the reader ultimately needs the untransformed values. So a log-lin plot could have
y-axis with 101, 102, 103, 104 etc. all equidistant. And not with values 1, 2, 3, 4 equidistant.

Figure 14.10: Plotting exponential graphs on a log-lin plot

Similarly, if the data grows very slowly, you may find that a lin-log plot (given by
by taking the logarithm of the x-values) gives a more useful view. This is easily done in
matplotlib with the command plt.semilogx(x,y).

Transformations can also be useful for histograms. As an example, let us look at the
cost of health care claims. Our data set is fabricated, but designed to closely resemble
real-life data. An initial plotting of the data produces the histogram on the left in Figure
14.11. From this picture, it is hard to see the nature of the data—the plot almost looks
like a single bar. We may think that all health care claims are cheap. However, when

154 Lab 14. Data Visualization

Figure 14.11: Here are some functions plotted on various logarithmic and linear
scales. The dark blue line is y = x, the green line is y = log(x), the red line is
y = ex, and the light blue line is y = x3. We have used di↵erent ranges on the
y-axes to highlight appropriate parts of the graphs.

we take the logarithm of the claims prices, we get the histogram on the right in Figure
14.11. Graphed on this scale, the data has a bell-shaped distribution similar to a normal
distribution. Moreover, we see that there are some very expensive claims being submitted,
though they are few.

As a general rule, taking the log of the y-values is most useful when the range of the
y-values is orders of magnitude larger than the range of the x-values. Our health care data
was an example of this. Similarly, taking the log of the x-values is most useful when the
range of the x-values is much bigger than the range of the y-values. In any case, you can
try applying a log scale to one or both of your axes as a way to explore your data.

Be warned that many di↵erent functions can look almost linear on log plots. Thus, if
you graph your data on a log-log plot and you see a line, you cannot conclude that your
data must follow a polynomial. In general, you need more information.

Communicating Data with Visualizations

As the saying has it, “a picture is worth a thousand words.” Certainly, a data visualization
is far more valuable than a thousand data points to a colleague who wants to understand
the results of your analysis. Data visualizations are critical for communication in both
business and research.

155

Figure 14.12: Two histograms of the same data are plotted above. The plot at left
is a lin-lin scale, whereas the plot at right is a log-lin scale (log of the y-values). In
this case, changing scales revealed important information about the data.

Choosing the Right Visualization

At this point, you have already used visualization to explore your data and draw conclu-
sions, and you are ready to tell your results to someone else. The first step in creating a
graphic to do this is to choose the right type of visualization. As we saw in the section
“Types of Visualizations,” there are many possibilities, each with di↵erent strengths. You
should carefully consider which one best suits your data set and communication needs.
Your goal should always be communicating as clearly, e↵ectively, and accurately as possi-
ble.

Visualizations to Avoid: Pie Charts, Radar Charts, and Stacked Bar Charts

There are also several popular types of visualizations that you should generally not use.
These may look pretty, but they tend to obscure information or cause confusion because
of natural di�culties humans have in interpreting them.

For example, people have much more di�culty judging changes and variation in area
than they do in length. As a result, charts that depend on distinguishing variation in area
will be less e↵ective and easily misunderstood. One of the most common charts that has
this problem is the pie chart. Figure 14.13 indicates the di�culty in judging the di↵erence
in area between the lobster and bean slices.

As bad as the pie chart may be, there is a way to make things worse—make the
chart three-dimensional. It seems to be very popular for people to convert a visualization
that is naturally 2 or 1 dimensional into one that is artificially three dimensional, but
this inevitably makes things more confusing. For example, we already have di�culty
distinguishing the variation in area in a pie chart, and when we add a third dimension, it
becomes even harder to distinguish variation in volume.

Other visualization types that tend to be confusing and ine↵ective include the stacked
bar and the radar graph. The radar graph is just generally confusing. The main problem
with stacking bars is that the second bar is not based at zero, so it becomes di�cult to
compare the di↵erent parts, as in Figure 14.14

156 Lab 14. Data Visualization

Figure 14.13: A pie chart on the left that has been improved by a transformation
into a bar chart on the right.

Figure 14.14: Stacked Bar Chart. Note how much more di�cult it is to compare
the relative values when they are stacked (on the left) instead of adjacent (on the
right).

Simplify

A sentence should contain no unnecessary words, a paragraph no unnecessary sentences

for the same reason that a drawing should contain no unnecessary lines and a machine no

unnecessary parts. —Strunk and White

Once you have chosen the visualization best suited to your data, you should design the
details so that all elements contribute to the communication of data.

Data visualization guru, Edward Tufte, o↵ers two principles for simplifying graph-
ics: (1) erase ink that does not communicate data, and (2) erase ink that communicates
data redundantly. ([tufte2001] pp.96-100). According to these principles, decorative
backgrounds, fancy lettering, and cute graphics in the corner of your plots should all be
deleted.

Other opportunities for simplification are harder to notice and implement. As an
example, let us examine the plot on the right of Figure 14.11. This plot was created with
the following code.

import numpy as np

import scipy as sp

from matplotlib import pyplot as plt

157

m = 2.07

s = 0.63

num_samples = 10000

samples = []

for i in range(num_samples):

samples.append(sp.random.normal(m, s))

sp_samples = sp.array(samples)

Plot the histogram

plt.hist(sp_samples, 100)

For purposes of this example, the only important part of the above code is the line
plt.hist(sp_samples, 100) that plots the histogram. What ink in this plot can we erase
because it communicates no data?

First, let’s get rid of the vertical black lines that separate the bars of the histograph
and the black outline. These are meaningless for our application and only distract. We
can do this by modifying our call to plt.hist() as follows.

plt.hist(sp_samples, 100, edgecolor='none')

Next, let us turn o↵ the top and right lines that box in the graph. To do this, we need
to access the “axis” object associated with the figure. We can access the “axis” object
with the command plt.gca() (get current axis).

Get current axis instance

axis = plt.gca()

Hide top and right spines

axis.spines['right'].set_visible(False)
axis.spines['top'].set_visible(False)

These commands only turn o↵ the sides of the box, not the tick marks. To turn o↵
the tick marks we run the following commands.

Only show bottom and left tick marks

axis.yaxis.set_ticks_position('left')
axis.xaxis.set_ticks_position('bottom')

Finally, we do not need so many tick marks on the x- and y-axes. We adjust those
along with specifying the range on each axis.

Fix x- and y-ranges

plt.xlim(-1,5)

plt.ylim(0, 350)

Use fewer axis ticks

plt.xticks(np.arange(0, 5, 2))

plt.yticks(np.arange(0, 351, 100))

The final graph is shown in Figure 14.15. Note how much cleaner this looks than the
original.

158 Lab 14. Data Visualization

Figure 14.15: A simplified version of the histogram in Figure 14.11.

Problem 9. Choose a graph you previously created that you think could use
simplification. Apply at least 3 of the following to simplify your plot:

1. Turn o↵ some of the spines.

2. Fix the x- or y-range to better fit your data.

3. Change the number of x- or y-ticks.

4. Choose a better color scheme.

Simplify your image in any other ways you can think of.

Small Multiples

Often we have too much information to display cleanly in one chart. One indicator of this
is if the reader must often look back and forth between a legend and the chart to decode
the images. A very useful way to deal with this problem is the method of small multiples,
an idea made famous by Edward Tufte.

The idea is to separate the data into many small graphics, placed near each other in a
way that allows us to easily compare them.

For example, one might wish to compare the first six Chebyshev polynomials. It would
be natural to plot them together on the same graph, as in Figure 14.16. But this graph is
too cluttered and one must constantly refer back to the legend to identify which colored

159

Figure 14.16: Chebyshev polynomials together on the left and separately on the
right. Notice that the legend is no longer needed for the right graph and it is easier
to compare between Chebyshev polynomials because the graph isn’t cluttered.

line is which.

The small multiple approach is to plot each polynomial on its own set of axes, adjacent
to each other and aligned in such a way that you can easily compare the di↵erent plots as
in Figure14.16

Note how even with 9 plots instead of 6, it is much easier to identify the di↵erent
polynomials and to compare them.

The main tool you need to make small multiples is the command ax = plt.subplot().
This allows you to set up multiple plots, and access them one at a time.

import numpy as np

from matplotlib import pyplot as plt

from numpy.polynomial import Chebyshev as T

def Chebyshev_subplots():

fig = plt.figure(dpi=100)

fig.set_size_inches(10,10)

fig.suptitle('Chebyshev Polynomials', fontsize=20)

x = np.linspace(-1,1,500)

for i in range(9):

ax = plt.subplot(3,3,i+1)

ax.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
plt.xlim(-1.1,1.1)

plt.ylim(-1.1,1.1)

ax.set_title('$T_%d$'%i)
if i%3:

remove the inner y-ticks and labels.

ax.set_yticklabels([])

ax.yaxis.set_ticks_position('none')
if i<6:

remove the inner x-ticks and labels.

ax.xaxis.set_ticks_position('none')
ax.set_xticklabels([])

plt.show()

160 Lab 14. Data Visualization

Problem 10. The n+ 1 Bernstein basis polynomials of degree n are defined as

bv,n =

n
v

!
xv(1� x)n�v, v = 0, 1, ..., n.

Plot the Bernstein basis polynomials for v, n in [0,3] as small multiples and
compare that to the cluttered version of plotting them on top of each other.

