
Lab 15

Numerical Derivatives

Lab Objective: Understand and implement finite difference approximations of the

derivative in single and multiple dimensions. Evaluate the accuracy of these approxima-

tions. Then use finite difference quotients to find edges in images via the Sobel filter.

Derivative Approximations in One Dimension

The derivative of a function f at a point x0 is

f �(x0) = lim
h→0

f(x0 + h)− f(x0)

h
. (15.1)

In this lab, we will investigate one way a computer can calculate f �(x0).

Forward Difference Quotient

Suppose that in Equation (15.1), instead of taking a limit, we just pick a small value for

h. Then we would expect f �(x0) to be close to the quantity

f(x0 + h)− f(x0)

h
. (15.2)

This quotient is called the first order forward difference approximation of the derivative.

Because f �(x0) is the limit of such quotients, we expect that when h is small, this quotient

is close to f �(x0). We can use Taylor’s formula to find just how close.

By Taylor’s formula,

f(x0 + h) = f(x0) + f �(x0)h+R2(h),

where R2(h) =
�� 1

0
(1− t)f ��(x0 + th)dt

�
h2. (This is called the integral form of the re-

mainder for Taylor’s Theorem; see Volume 1 Chapter 6). When we solve this equation for

f �(x0), we get

f �(x0) =
f(x0 + h)− f(x0)

h
− R2(h)

h
. (15.3)

Thus, the error in using the first order forward difference quotient to approximate f �(x0)

is ����
R2(h)

h

���� ≤ |h|
� 1

0

|1− t||f ��(x0 + th)|dt.

163

164 Lab 15. Numerical Derivatives

If we assume f �� is continuous, then for any δ, set M = supx∈(x0−δ,x0+δ) f
��(x). Then if

|h| < δ, we have ����
R2(h)

h

���� ≤ |h|
� 1

0

Mdt = M |h|∈O(h).

Therefore, the error in using (15.2) to approximate f �(x0) grows like h.

Centered Difference Quotient

In fact, we can approximate f �(x0) to the second order with another difference quotient,

called the centered difference quotient. We begin by trying to find the backward difference

quotient. Evaluate Taylor’s formula at x0 − h to derive

f �(x0) =
f(x0)− f(x0 − h)

h
+

R2(−h)

h
. (15.4)

The first term on the right hand side of (15.4) is called the backward difference quotient.

This quotient also approximates f �(x0) to first order, so it is not the quotient we are

looking for. When we add (15.3) and (15.4) and solve for f �(x0) (by dividing by 2), we

get

f �(x0) =
1
2
f(x0 + h)− 1

2
f(x0 − h)

h
+

R2(−h)−R2(h)

2h
(15.5)

The centered difference quotient is the first term of the right hand side of (15.5). Let us

investigate the remainder term to see how accurate this approximation is. Recall from the

proof of Taylor’s theorem that Rk = f(k)(x0)
k!

hk +Rk+1. Therefore,

R2(−h)−R2(h)

2h
=

1

2h

�
f ��(x0)

2
h2 +R3(−h)− f ��(x0)

2
h2 −R3(h)

�

=
1

2h
(R3(−h)−R3(h))

=
1

2h

��� 1

0

(1− t)2

2
f ���(x0 + th)dt

�
h3 −

�� 1

0

(1− t)2

2
f ���(x0 − th)dt

�
h3

�

=

�� 1

0

(1− t)2

4
(f ���(x0 + th)− f ���(x0 − th))

�
h2

∈O(h2)

once we restrict h to some δ-neighborhood of 0. So the error in using the centered difference

quotient to approximate f �(x0) grows like h2, which is smaller than h when |h| < 1.

Accuracy of Approximations

Let us discuss what step size h we should plug into the difference quotients to get the

best approximation to f �(x0). Since f � is defined as a limit as h → 0, you may think

that it is best to choose h as small as possible, but this is not the case. In fact, dividing

by very small numbers causes errors in floating point arithmetic. This means that as we

decrease |h|, the error between f �(x0) and the difference quotient will first decrease, but

then increase when |h| gets too small because of floating point arithmetic.

Here is an example with the function f(x) = ex. A quick way to write f as a function

in Python is with the lambda keyword.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> f = lambda x: np.exp(x)

165

h 1e-1 1e-3 1e-5 1e-7 1e-9 1e-11

Error 5e-3 5e-7 6e-11 6e-11 7e-9 1e-5

Table 15.1: This table shows that it is best not to choose h too small when you

approximate derivatives with difference quotients. Here, “Error” equals the abso-

lute value of f �(1) − fapp(1) where f(x) = ex and fapp is the centered difference

approximation to f �.

In general, the line f = lambda <params> : <expression> is equivalent to defining a function

f that accepts the parameters params and returns expression.

Next we fix a step size h and define an approximation to the derivative of f using the

centered difference quotient.

>>> h = 1e-1

>>> Df_app = lambda x: .5*(f(x+h)-f(x-h))/h

Finally, we check the accuracy of this approximation at x0 = 1 by computing the difference

between Df_app(1) and the actual derivative evaluated at 1.

Since f(x) = e^x, the derivative of f(x) is f(x)

>>> np.abs(f(1)-Df_app(1))

0.0045327354883726301

We note that our functions f and Df_app behave as expected when they are passed a

NumPy array.

>>> h = np.array([1e-1, 1e-3, 1e-5, 1e-7, 1e-9, 1e-11])

>>> np.abs(f(1)-Df_app(1))

array([4.53273549e-03, 4.53046679e-07, 5.85869131e-11,

5.85873572e-11, 6.60275079e-09, 1.04294937e-05])

These results are summarized in Table 15.1.

Thus, the optimal value of h is one that is small, but not too small. A good choice is

h = 1e-5.

Problem 1. Write a function that accepts as input a callable function object f,

an array of points pts, and a keyword argument h that defaults to 1e-5. Return an

array of the centered difference quotients of f at each point in pts with the specified

value of h.

You may wonder if the forward or backward difference quotients are ever used, since the

centered difference quotient is a more accurate approximation of the derivative. In fact,

there are some functions that in practice do not behave well under centered difference

quotients. In these cases, one must use the forward or backward difference quotient.

Finally, we remark that forward, backward, and centered difference quotients can be

used to approximate higher-order derivatives of f . However, taking derivatives is an unsta-

ble operation. This means that taking a derivative can amplify the arithmetic error in your

computation. For this reason, difference quotients are not generally used to approximate

derivatives higher than second order.

166 Lab 15. Numerical Derivatives

Derivative Approximations in Multiple Dimensions

Finite difference methods can also be used to calculate derivatives in higher dimensions.

Recall that the Jacobian of a function f : Rn → Rm at a point x0 ∈ Rn is the m × n

matrix J = (Jij) defined component-wise by

Jij =
∂fi
∂xj

(x0).

For example, the Jacobian for a function f : R3 → R2 is defined by

J =
�

∂f
∂x1

∂f
∂x2

∂f
∂x3

�
=

�
∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

�
.

The Jacobian is useful in many applications. For example, the Jacobian can be used

to find zeros of functions in multiple variables.

The forward difference quotient for approximating a partial derivative is

∂f

∂xj
(x0) ≈ f(x0 + hej)− f(x0)

h
,

where ej is the jth standard basis vector. Similarly, the centered difference approximation

is
∂f

∂xj
(x0) ≈

1
2
f(x0 + hej)− 1

2
f(x0 − hej)

h
.

Problem 2. Write a function that accepts

1. a function handle f,

2. an integer n that is the dimension of the domain of f,

3. an integer m that is the dimension of the range of f,

4. an 1 x n-dimensional NumPy array pt representing a point in Rn, and

5. a keyword argument h that defaults to 1e-5.

Return the approximate Jacobian matrix of f at pt using the centered difference

quotient.

Problem 3.

Let f : R2 → R2 be defined by

f(x, y) =

�
ex sin(y) + y3

3y − cos(x)

�

Find the error between your Jacobian function and the analytically computed

derivative on the square [−1, 1] × [−1, 1] using ten thousand grid points (100 per

side). You may apply your Jacobian function to the points one at a time using

a double for loop. Once you get the error matrix for a given point, calculate the

Frobenius norm of this matrix (la.norm defaults to the Frobenius norm). This

norm will be your total error for that point. What is the maximum error of your

Jacobian function over all points in the square?

167

Hint: The following code defines the function f(x, y) =

�
x2

x+ y

�
.

f accepts a length-2 NumPy array

>>> f = lambda x: np.array([x[0]**2, x[0]+x[1]])

Application to Image Filters

Recall that a computer stores an image as a 2-D array of pixel values (i.e., a matrix of

intensities). An image filter is a function that transforms an image by operating on it

locally. That is, to compute the ijth pixel value in the new image, an image filter uses

only the pixels in a small neighborhood around the ijth pixel in the original image.

In this lab, we will use a filter derived from the gradient of an image to find edges in

an image.

Convolutions

One example of an image filter is to convolve an image with a filter matrix. A filter matrix

is a matrix whose height and width are relatively small odd numbers. If the filter matrix

is

F =



f−1,−1 f−1,0 f−1,1

f0,−1 f0,0 f0,1
f1,−1 f1,0 f1,1


 ,

then the convolution of an image A with F is A ∗ F = (Cij) where

Cij =

1�

k=−1

1�

�=−1

fk�Ai+k,j+�. (15.6)

Say A is an m × n matrix. Here, we take Aij = 0 when i �∈ {1, . . .m} or j �∈ {1, . . . , n}.
The value of Cij is a linear combination of the nearby pixel values, with coefficients given

by F (see Figure 15.1). In fact, Cij equals the Frobenius inner product of F with the 3×3

submatrix of A centered at ij.

Implementation in NumPy

Let us write a function that convolves an image with a filter. You can test this function

on the image cameraman.jpg, which appears in Figure 15.2a. The following code loads this

image and plots it with matplotlib.

>>> image = plt.imread('cameraman.jpg')
>>> plt.imshow(image, cmap = 'gray')
>>> plt.show()

Here is the function definition and some setup.

1. def Filter(image, F):

2. m, n = image.shape

3. h, k = F.shape

168 Lab 15. Numerical Derivatives

•

•

•

•

Figure 15.1: This diagram illustrates how to convolve an image with a filter. The

light grey rectangle represents the original image A, and the dark grey squares are

the filter F . The larger rectangle is the image padded with zeros; i.e., all pixel

values in the outer white band are 0. To compute the entry of the convolution

matrix C located at a black dot, take the inner product of F with the submatrix of

the padded image centered at the dot.

To convolve image with the filter F, we must first pad the array image with zeros around the

edges. This is because in (15.6), entries Aij are set to zero when i or j is out of bounds.

We do this by creating a larger array of zeros, and then making the interior part of the

array equal to the original image (see Figure 15.1).

For example, if the filter is a 3× 3 matrix, then the following code will pad the matrix

with the appropriate number of zeros.

Create a larger matrix of zeros

image_pad = np.zeros((m+2, n+2))

Make the interior of image_pad equal to the original image

image_pad[1:1+m, 1:1+n] = image

We want to do this in general in our function. Note that the number of zeros we need to

pad our array depends on the size of the filter F.

5. image_pad = # Create an array of zeros of the appropriate size

6. # Make the interior of image_pad equal to image

Finally, we iterate through the image to compute each entry of the convolution matrix.

7. C = np.zeros(image.shape)

8. for i in range(m):

9. for j in range(n):

10. C[i,j] = # Compute C[i, j]

169

Gaussian Blur

A Gaussian blur is an image filter that operates on an image by convolving with the matrix

G =
1

159




2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2




.

Blurring an image can remove “noise”, or random variation that is the visual analog

of static in a radio signal (and equally undesirable).

Problem 4. Finish writing the function Filter by filling in lines 5, 6, and 10.

Hint: Note in 15.6, Cij was calculated by summing from -1 to 1. This is only the

case if the filter F is 3× 3. A slight modification is needed in the general case. Test

your function on the image cameraman.jpg using the Gaussian Blur. The result is

in Figure 15.2b.

Edge Detection

Automatic detection of edges in an image can be used to segment or sharpen the image.

We will find edges with the Sobel filter, which computes the gradient of the image at each

pixel. The magnitude of the gradient tells us the rate of change of the pixel values, and

so large magnitudes should correspond to edges within the image. The Sobel filter is not

a convolution, although it does use convolutions.

We can think of an image as a function from a 2 × 2 grid of points to R. The image

maps a pixel location to an intensity. It does not make sense to define the derivative of this

function as a limit because the domain is discrete—a step size h cannot take on arbitrarily

small values. Instead, we define the derivative to be the centered difference quotient of

the previous section. That is, we define the derivative in the x-direction at the ijth pixel

to be
1

2
Ai+1,j − 1

2
Ai−1,j .

We can use a convolution to create a matrix Ax whose ijth entry is the derivative of

A at the ijth entry, in the x-direction. In fact, Ax = A ∗ S, where

S =
1

8



−1 0 1

−2 0 2

−1 0 1


 .

Note that this convolution takes a weighted average of the x-derivatives at (i, j), (i, j+

1), and (i, j−1). The derivative at (i, j) is weighted by 2. Using a weighted average instead

of just the derivative at (i, j) makes the derivative less affected by noise.

Now we can define the Sobel filter. A Sobel filter applied to an image A results in

an array B = (Bij) of 0’s and 1’s, where the 1’s trace out the edges in the image. By

definition,

Bij =

�
1 if �∇A(ij)�2 > M

0 otherwise.

Here, ∇A(ij) = ((A ∗ S)ij , (A ∗ ST)ij) is the gradient of A at the ijth pixel. The constant

M should be “sufficiently large” enough to pick out those pixels with the largest gradient

170 Lab 15. Numerical Derivatives

(a) Unfiltered image. (b) Image after Gaussian blur is applied.

(c) Image after the Sobel filter is applied.

Figure 15.2: Here is an example of a Gaussian blur and the Sobel filter applied

to an image. This photo, known as “cameraman,” is a standard test image in

image processing. A database of such images can be downloaded from http://

www.imageprocessingplace.com/root_files_V3/image_databases.htm.

(i.e., those pixels that are part of an edge). A good choice for M is 4 times the average

value of �∇A(ij)�2 over the whole image A.

When the Sobel filter is applied to cameraman.jpg, we get the image in Figure 15.2c.

Here, the 1’s in B were mapped to “white” and the 0’s were mapped to “black.”

Problem 5. Write a function that accepts an image as input and applies the Sobel

filter to the image. Test your function on cameraman.jpg. Hint: If you want to find

the average of a matrix A, use the function A.mean().

