
Lab 1

Newton’s Method and
Basins of Attraction

Lab Objective: Understand Newton’s Method. Understand the definition of a

basin of attraction.

Newton’s method finds the zeros of functions; that is, Newton’s method finds

x such that f (x) = 0. This method can be used to optimize functions (find their

maxima and minima). For example, it can be used to find the zeros of the first

derivative.

Newton’s Method

Newton’s method begins with an initial guess x0. Then recursively define a sequence

by

xn+1 = xn −
f(xn)

f ′(xn)
.

In other words, Newton’s method approximates a function by its tangent line, and

then uses the zero of the tangent line as the next guess for xn (see Figure ??).

The sequence {xn} will converge to the zero x of f if

1. f , f ′, and f ′′ exist and are continuous,

2. f ′(x) 6= 0, and

3. x0 is “sufficiently close” to x.

In applications, the first two conditions usually hold. However, if x and x0 are

not “sufficiently close,” Newton’s method may converge very slowly, or it may not

converge at all.

Newton’s method is powerful because given the three conditions above, it con-

verges quickly. In these cases, the {xn} converge to the actual root quadratically,

meaning that the maximum error is squared at every iteration.

Let us do an example with f(x) = x2 − 1. We define f(x) and f ′(x) in Python

as follows.

1

2 Lab 1. Newton’s Method

-2 -1 1 2

-2

2

4

6

8

10

x0

x1

x2

Figure 1.1: An illustration of how one iteration of Newton’s method works.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> f = lambda x : x**2 - 1

>>> Df = lambda x : 2*x

Now we set x0 = 1.5 and iterate.

>>> xold = 1.5

>>> xnew = xold - f(xold)/Df(xold)

>>> xnew

1.0833333333333333

We can repeat this as many times as we desire.

>>> xold = xnew

>>> xnew = xold - f(xold)/Df(xold)

>>> xnew

1.0032051282051282

We have already computed the root 1 to two digits of accuracy.

Problem 1.

Implement Newton’s method with the following function.

3

def Newtons_method(f, x0, Df, iters=15, tol=1e-5):

'''
Use Newton's method to approximate a zero of a function.

Inputs:

f (function): A function handle. Should represent a function from ←↩
R to R.

x0 (float): Initial guess.

Df (function): A function handle. Should represent the derivative ←↩
of f.

iters (int): Maximum number of iterations before the function ←↩
returns. Defaults to 15.

tol (float): The function returns when the difference between ←↩
successive approximations is less than tol.

Returns:

A tuple (x, converged, numiters) with

x (float): the approximation for a zero of f;

converged (bool): a Boolean telling whether Newton's method ←↩
converged;

numiters (int): the number of iterations the method computed.

'''

Problem 2. 1. Run Newtons_method() on f = cos(x) with x0 = 1 and

x0 = 2. How many iterations are required to acheive five digits of

accuracy (tolerance of 10−5)?

2. Newton’s method can be used to find zeros of functions that are hard to

solve for analytically. Plot f(x) = sin(x)
x − x on [−4, 4]. Note that this

function can be made continuous on this domain by defining f(0) = 1.

Use your function Newtons_method() to compute the zero of this function

to seven digits of accuracy.

3. Run Newtons_method() on f(x) = x9 with x0 = 1. How many iterations

are required to get five digits of accuracy? Why is it so slow?

4. Run Newtons_method() on f(x) = x1/3 with x0 = .01. What happens and

why? Hint: The command x**(1/3) will not work when x is negative.

Here is one way to define the function f(x) = x1/3 in NumPy.

f = lambda x: np.sign(x)*np.power(np.abs(x), 1./3)

Problem 3. (Optional) Modify the function Newtons_method() in Problem 1

so that the argument Df defaults to None. If no derivative is passed to the

function, use the centered coefficients method of Lab ?? to compute the

derivative.

4 Lab 1. Newton’s Method

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

Figure 1.2: The plot of f(x) = x2−1 along with some values for x0. When Newton’s

method is initialized with a blue value for x0 it converges to -1; when it is initialized

with a red value it converges to 1.

Basins of Attraction: Newton Fractals

When f(x) has many roots, the root that Newton’s method converges to depends

on the initial guess x0. For example, the function f(x) = x2 − 1 has roots at −1

and 1. If x0 < 0, then Newton’s method coverges to -1; if x0 > 0 then it converges

to 1 (see Figure 1.2). We call the regions (−∞, 0) and (0,∞) basins of attraction.

When f is a polynomial of degree greater than 2, the basins of attraction are

much more interesting. For example, if f(x) = x3 − x, the basins are depicted in

Figure 1.3.

We can extend these examples to the complex plane. Newton’s method works in

arbitrary Banach spaces with slightly stronger hypotheses (see Chapter 7 of Volume

1), and in particular it holds over C.

Let us plot the basins of attraction for f(x) = x3 − x on the domain {a + bi |
(a, b) ∈ [−1.5, 1.5] × [−1.5, 1.5]} in the complex plane. We begin by creating a

700× 700 grid of points in this domain. We create the real and imaginary parts of

the points separately, and then use np.meshgrid() to turn them into a single grid of

complex numbers.

>>> xreal = np.linspace(-1.5, 1.5, 700)

>>> ximag = np.linspace(-1.5, 1.5, 700)

>>> Xreal, Ximag = np.meshgrid(xreal, ximag)

>>> Xold = Xreal+1j*Ximag

Recall that 1j is the complex number i in NumPy. The array Xold contains 7002

complex points evenly spaced in the domain.

We may now perform Newton’s method on the points in Xold.

>>> f = lambda x : x**3-x

5

Figure 1.3: The plot of f(x) = x3 − x along with some values for x0. Blue values

converge to −1, red converge to 0, and green converge to 1.

>>> Df = lambda x : 3*x**2 - 1

>>> Xnew = Xold - f(Xold)/Df(Xold)

After iterating the desired number of times, we have an array Xnew whose entries are

various roots of x3 − x.

Finally, we plot the array Xnew. The result is similar to Figure 1.4.

>>> plt.pcolormesh(Xreal, Ximag, Xnew)

Notice that in Figure 1.4, whenever red and blue try to come together, a patch

of green appears in between. This behavior repeats on an infinitely small scale,

producing a fractal. Because it arises from Newton’s method, this fractal is called

a Newton fractal.

Newton fractals tell us that the long-term behavior of the Newton method is

extremely sensitive to the initial guess x0. Changing x0 by a small amount can

change the output of Newton’s method in a seemingly random way. This is an

example of chaos.

Problem 4.

Complete the following function to plot the basins of attraction of a

function.

def plot_basins(f, Df, roots, xmin, xmax, ymin, ymax, numpoints=100, iters←↩
=15, colormap='brg'):
'''Plot the basins of attraction of f.

INPUTS:

6 Lab 1. Newton’s Method

Figure 1.4: Basins of attraction for x3 − x in the complex plane. The picture on

the right is a close-up of the figure on the left.

f - A function handle. Should represent a function

from C to C.

Df - A function handle. Should be the derivative of f.

roots - An array of the zeros of f.

xmin, xmax, ymin, ymax - Scalars that define the domain

for the plot.

numpoints - A scalar that determines the resolution of

the plot. Defaults to 100.

iters - Number of times to iterate Newton's method.

Defaults to 15.

colormap - A colormap to use in the plot. Defaults to 'brg'.
'''

You can test your function on the example f(x) = x3 − x above.

When the function plt.pcolormesh() is called on a complex array, it eval-

uates only on the real part of the complex numbers. This means that if two

roots of f have the same real part, their basins will be the same color if you

plot directly using plt.pcolormesh().

One way to fix this problem is to compute Xnew as usual. Then iterate

through the entries of Xnew and identify which root each entry is closest to

using the input roots. Finally, create a new array whose entries are integers

corresponding to the indices of these roots. Plot the array of integers to view

the basins of attraction. Hint: The roots of f(x) = x3 − x are [0, 1,−1].

Problem 5. Run plot_basins() on the function f(x) = x3−1 on the domain

{a+ bi | (a, b) ∈ [−1.5, 1.5]× [−1.5, 1.5]}. The resulting plot should look like

Figure 1.5. Hint: the roots of f(x) = x3 − 1 are [1,−1j1/3, 1j2/3].

7

Figure 1.5: Basins of attraction for x3 − 1.

	Preface
	I Python Essentials
	Newton's Method

