
Lab 1

Importance Sampling and
Monte Carlo Simulations

Lab Objective: Use importance sampling to reduce the error and variance of

Monte Carlo Simulations.

Introduction

The traditional methods of Monte Carlo integration as discussed in the previous

lab are not always the most efficient means to estimate an integral. For example,

assume we were trying to find the probability that a randomly chosen variable X

from the standard normal distribution is greater than 3. We know that one way to

solve this is by solving the following integral:

P (X > 3) =

∫ ∞
3

fX(t) dt =
1√
2π

∫ ∞
3

e−t
2/2 dt (1.1)

If we define the function h : R→ R as

h(t) =

{
1 if t > 3

0 if t ≤ 3
,

we can rewrite this integral as

∫ ∞
3

fX(t) dt =

∫ ∞
−∞

h(t)fX(t) dt.

By the Law of the Unconscious Statistician (see Volume 2 §3.5), we can restate

the integral above as

∫ ∞
−∞

h(t)fX(t) dt = E[h(X)].

Being able to write integrals as expected values is an essential tool in this lab.

1

2 Lab 1. Importance Sampling and Monte Carlo Simulations

Monte Carlo Simulation

In the last section, we expressed the probability of drawing a number greater than

3 from the normal distribution as an expected value problem. We can now easily

estimate this same probabilty using Monte Carlo simulation. Given a random i.i.d.

sample x1, x2, · · · , xN generated by fX , we can estimate E[h(X)] using

Ên[h(X)] =
1

N

N∑
i=1

h(xi) (1.2)

Now that we have defined the estimator, it is now quite manageable to approx-

imate Equation 1.1. By the Weak Law of Large Numbers (see Volume 2 §3.6), the

estimate will get closer and closer to the actual value as we use more and more

sample points.

Problem 1. Write a function in Python that estimates the probability that

a random draw from the standard normal distribution is greater than 3 using

Equation 1.2. Your function should accept a parameter n for the number

of samples to use in your approximation. Your answer should approach

0.0013499 for sufficiently large samples.

Though this approach gets the job done, it turns out that this isn’t very efficient.

Since the probability of drawing a number greater than 3 from the standard normal

distribution is so unlikely, it turns out we need many sample points to get a good

approximation.

Importance Sampling

Importance sampling is one way to make Monte Carlo simulations converge much

faster. We choose a different distribution to sample our points to generate more

important points. With our example, we want to choose a distribution that would

generate more numbers around 3 to get a more reliable estimate. The theory behind

importance sampling boils down to the following result. In these equations, the

random variable X is generated by fX and the random variable Y is generated by

gY . We will refer to X and Y in this way for the remainder of the lab.

E[h(X)] =

∫ ∞
−∞

h(t)fX(t) dt

=

∫ ∞
−∞

h(t)fX(t)

(
gY (t)

gY (t)

)
dt

=

∫ ∞
−∞

(
h(t)fX(t)

gY (t)

)
gY (t) dt

= E

[
h(Y)fX(Y)

gY (Y)

]
(1.3)

3

The corresponding estimator is

Ê[h(X)] = Ê

[
h(Y)fX(Y)

gY (Y)

]
=

1

N

N∑
i=1

h(yi)fX(yi)

gY (yi)

(1.4)

The function fX is the p.d.f. of the target distribution. The function gY is the

p.d.f. of the importance distribution. The fraction fX(X)
gY (X) is called the importance

weight. This allows us to draw a sample from any distribution with p.d.f. gY as

long as we multiply h(X) by the importance weight.

Choosing the Importance Distribution

There is no correct choice for the importance distribution. It may be possible to find

the distribution that allows the simulation to converge the fastest, but oftentimes,

we don’t need a perfect answer. Close to perfect is good enough.

We will solve the same problem as in Problem 1 using importance sampling. We

will choose gY to be the normal distribution with µ = 4 and σ = 1. We have chosen

this distribution for gY because it will give us more points closer to and greater

than 3. Note that it is not necessary to choose an importance distribution of the

same type.

4 Lab 1. Importance Sampling and Monte Carlo Simulations

4 2 0 2 4 6

0.2

0.0

0.2

0.4

0.6

Target Distribution
Importance Distribution

Figure 1.1: In our problem, we choose an importance distribution that will generate

more samples that are greater than 3. Though not a perfect choice, choosing a

normal distribution with µ = 4 and σ = 1 will suffice.

>>> import scipy.stats as stats

>>> h = lambda x : x > 3

>>> f = lambda x : stats.norm().pdf(x)

>>> g = lambda x : stats.norm(loc=4,scale=1).pdf(x)

Sample from the N(4,1).

>>> N = 10**7

>>> X = np.random.normal(4,scale=1,size=N)

Calculate estimate.

>>> 1./N * np.sum(h(X)*f(X)/g(X))

0.00134921134631

5

Figure 1.2: Comparison of error between standard method Monte Carlo and Im-

portance Sampling method of Monte Carlo.

Problem 2. A tech support hotline receives an average of 2 calls per minute.

What is the probability that they will have to wait at least 10 minutes

to receive 9 calls? Implement your estimator using importance sampling.

Calculate estimates using 5000, 10000, 15000, · · · , 500000 sample points.

Return an array of estimates. Your answers should approach 0.00208726.

Hint: In Volume 2 §3.5, the gamma distribution is defined as,

fX(x) =
baxa−1e−xb

Γ(a)
.

The version of the gamma distribution in scipy.stats is determined by the

shape (a) and the scale (θ) of the distribution.

fX(x) =
xa−1e−x/θ

Γ(a)θa

You can switch between these representations this with the fact that θ = 1/b.

6 Lab 1. Importance Sampling and Monte Carlo Simulations

Problem 3. In this problem, we will visualize the benefits of importance

sampling. Create a plot of the error of the traditional methods of Monte

Carlo integration and the importance sampling methods of Monte Carlo for

Problem 2. What do you observe? Your plot should resemble Figure 1.2.

Hint: The following code solves Problem 2 using traditional methods of

Monte Carlo integration:

h = lambda x : x > 10

MC_estimates = []

for N in xrange(5000,505000,5000):

X = np.random.gamma(9,scale=0.5,size=N)

MC = 1./N*np.sum(h(X))

MC_estimates.append(MC)

MC_estimates = np.array(MC_estimates)

Hint: To determine the error of your approximations, the following code

returns the actual value of the probability:

1 - stats.gamma(a=9,scale=0.5).cdf(10)

Now that we have visualized the benefits of importance sampling, note that

we can achieve the same results as traditional Monte Carlo with a fraction of the

samples.

Generalizing the Principles of Importance Sampling

The examples we have explored to this point in the lab were merely educational.

Since we have a simple means of calculating the correct answer to Problem 2, it

doesn’t make much sense to use methods of Monte Carlo in this situation. However,

as discussed in the previous lab, there are not always closed-form solutions to the

integrals we want to compute.

We can extend the same principles we have discussed thus far to solve many

types of problems. For a more general problem, we can implement importance

sampling by doing the following:

1. Define a function h where, h(t) =

{
1 if condition is met

0 otherwise
.

2. Define a function fX which is the p.d.f. of the target distribution.

3. Define a function gY which is the p.d.f. of the importance distribution.

4. Use these functions in conjunction with Equation (1.4).

7

Problem 4. The joint normal distribution of N independent random vari-

ables with mean 0 and variance 1 is

fX(x) =
1√

(2π)N
e−(x

Tx)/2.

The integral of fX(x) over a box is the probability that a draw from the

distribution will be in the box. However, fX(x) does not have a symbolic

antiderivative.

Use what you have learned about importance sampling to estimate the

probability that a given random variable in R2 generated by fX will be less

than -1 in the x-direction and greater than 1 in the y-direction.

Treat fX as the p.d.f. of your target distribution. Use the function

stats.multivariate_normal to create a multivariate normal distribution to serve

as your importance distribution. For more information on how to use this

function, consult the documentation for stats.multivariate_normal.

Unnormalized Target Densities

The methods discussed so far are only applicable if the target density is normalized,

or in other words, has an integral of 1. If the target density is not normalized,

Equation 1.3 becomes

E[h(X)] =

∫
h(t)f(t) dt∫
f(t) dt

=

∫
h(t)f(t)

(
gY (t)
gY (t)

)
dt∫

f(t)
(
gY (t)
gY (t)

)
dt

=

∫ (h(t)f(t)
gY (t)

)
gY (t) dt∫ (f(t)

gY (t)

)
gY (t) dt

=
E
[
h(Y)f(Y)
gY (Y)

]
E
[
f(Y)
gY (Y)

]
The corresponding estimator becomes

Ên[h(X)] =
Ê
[
h(Y)f(Y)
gY (Y)

]
Ê
[
f(Y)
gY (Y)

]
=

1
N

∑N
i=1

h(yi)f(yi)
gY (yi)

1
N

∑N
i=1

f(yi)
gY (yi)

	Importance Sampling and Monte Carlo Simulations

