
Lab 1

Sparse Grids

Lab Objective: Sparse Grids are an important tool when dealing with high-

dimensional problems. Computers operate in discrete space, not in continuous space.

It is important to choose evaluation points wisely so as to maximize accuracy without

sacrificing computation time. In particular, we explore how to use sparse grids to

compute integrals of high dimensionality.

Discretization

At first inspection, our world appears to be nice and continuous. However, this

only works on a macroscopic level. As we zoom in on matter, we find that it is

made of discrete atoms with much empty space between. Computers likewise work

in discrete space. You have already seen many examples of this. Consider plotting

the function y = x2, such as in Figure 1.1. To do this we take an array of discrete

points of x and y values, which are then joined in a linear manner. As you either

zoom in on the function or decrease the number of plotting points, you can see the

discrete nature of even this simple function.

In order to get better results, we need to use a larger number of points. This is

true not just for graphing purposes, but also for standard computation. If we double

the number of points, we approximately double the computation time necessary.

This effect, while not irrelevant, pales in comparison to the case when working

in multiple dimensions. Imagine a function that we discretize into 20 points. A

similar function of two variables, where each variable is discretized into 20 points,

would necessitate 400 unique points. Expanding to seven variables would necessitate

1, 280, 000, 000 unique points!

In general, for n discrete points in d dimensions, this gives nd points. This can

be visualized as a d-dimensional grid of size n× n× · · · × n. In practice, we seldom

need to know the value for each and every point. Instead of using the full grid, we

can use a sparse grid. The main idea of a sparse grid is that it can reduce the order

of difficulty for a standard d-dimensional problem.

1

2 Lab 1. spgrid

Figure 1.1: Plots of the function y = x2 using 31 points and 9 points, respectively.

In the 9-point plot, the linear, discrete nature of the function is easily visible.

j\i 1 2 3 max i

1 φ11(x) = φ(x) 1

2 φ21(x) = φ(2x+ 1) φ22(x) = φ(2x− 1) 2

3 φ31(x) = φ(4x+ 3) φ32(x) = φ(4x+ 1) φ33(x) = φ(4x− 1) 4

4 φ41(x) = φ(8x+ 7) φ42(x) = φ(8x+ 5) φ43(x) = φ(8x+ 3) 8

5 φ51(x) = φ(16x+ 15) φ52(x) = φ(16x+ 13) φ53(x) = φ(16x+ 11) 16

Table 1.1: The first few standard hat functions that make up the hierarchical basis,

for i ≤ 3.

The Hierarchical Basis

The basic sparse grid is based on the use of the Hierarchical Basis. This basis is

composed of piecewise-linear functions known as the standard hat functions, and can

be used to approximate any function. The standard hat function in one dimension

is defined as:

φ(x) =

{
1− |x| −1 ≤ x ≤ 1

0 otherwise
(1.1)

From this equation, we can build the set of basis functions of order j

φj,i(x) = φ(2j−1(x+ 1)− 2i+ 1) (1.2)

where i = 1, 2, 3, · · · , 2j−1.

The first few basis functions are listed in Table 1.1, and are plotted in Figure

1.2.

Using these basis functions, we can approximate any function of our choosing.

Suppose we want to solve ∫ 1

−1

√
1− x2 dx.

3

Figure 1.2: Plots of the first few standard hat functions. Note that the value of j

gives the number of ”hats” in the domain [−1, 1], and i gives which hat, counting

from the left-most hat.

This is the area of a semi-circle of radius 1, and can easily be computed mathe-

matically as π/2 ≈ 1.57079632679. But a computer does not calculate this in the

same manner. Instead, it uses certain points to evaluate the integral numerically.

We can approximate f(x) =
√

1− x2 by interpolating the basis hat functions. If

we approximate up to order l then this gives

f(x) ≈
l∑

n=1

2n−1∑
m=1

cnmφnm(x)

where cnm are the appropriate constants which can be found by evaluating the

difference between f(x) and the sum of the basis hat functions of lower order at the

peak of each hat:

cnm = f(pnm)−
n−1∑
s=1

2s−1∑
t=1

cst ∗ φst(pnm) (1.3)

where

pnm = 22−n ∗ (m− 0.5)− 1 (1.4)

and pnm is the peak of the mth hat of level n. These points will be important

because we will use these to create the basic sparse grid.

4 Lab 1. spgrid

Figure 1.3: Interpolating a function using the standard hat basis functions.

One benefit of decomposing f(x) into the basic hat functions is that they are

extremely simple to integrate. Each is a triangle, for which A = bh/2. The height

is 1, and the base is 22−n, and so∫ 1

−1

φnmdx = 21−n

One problem with using the basic hat functions to approximate a function arises

when the function does not go to zero at the endpoints. Higher order approximations

yield better results, but ultimately we need to decide how accurate we need our

answer to be. When an additional level changes the answer by less that our error

tolerance, we have found a good level of approximation.

Problem 1. Use the function declaration below to approximate a given

function on [−1, 1] with the basic hat functions up to order l:

def hat_approximation(f,l):

"""This function will return a list of the correct coefficients to ←↩
approximate the function f up to level l.

Parameters

f (function) : The function of a single variable to approximate

l (int) : The order to use for interpolating the hat function

Returns

coeffs (list) : Entry n is an ndarray of len(2^(n-1)) and contains←↩
the coefficients for phi_{nm}. The length of this should be←↩
l.

"""

pass

5

Figure 1.4

Problem 2. Write a function that, given the coefficients returned by the

function in Problem 1, returns the value of the integral.

Problem 3. Using the function f(x) =
√

1− x2, calculate the error of∫ 1

−1
f(x) in regards to the actual value π/2. Do this for the order l =

1, 2, · · · , 10, and plot the error as a function of l. Your results should match

Figure 1.4. Additionally, time how long it takes to execute the code for each

l, and plot your results in another graph.

Keep in mind that thus far we have only used a function of one variable. For

each variable (dimension) the time to compute will increase exponentially. With

multiple dimensions, it becomes infeasible to compute to any degree of accuracy,

because the time to compute will increase much too quickly to be reasonable for

higher dimensions. Hence the need for sparse grids.

Sparse Grids

Rather than dividing each dimension into n sections, which for d dimensions would

give nd points, sparse grids use only a few of these points. There are many types

of sparse grids, and each is useful for certain purposes. Which type of sparse grid

is used will often depend on the nature of the problem you are trying to solve. For

this lab, we will use the basic sparse grid for purposes of integration.

The basic sparse grid has two main properties, the dimension and the level.

Using these two variables and Equation 1.4, we can construct a sparse grid. Visual-

6 Lab 1. spgrid

Figure 1.5: Sparse grid points for 2-D grid of level 5

izing this in one dimension is simple: we use as our evaluation points each pnm. A

level 1 grid has one point at the center, which is the peak of the level 1 hat. A level

2 grid has the level 1 point with two level 2 points, which are the peaks of the two

level 2 hats. The third level adds its 4 points, etc. So for one dimension of level l

we have
∑l

i=1 2i−1 points.

Understanding a 2-dimensional grid is a bit more complicated. Our level 1 point

goes at the center of the grid. To expand to level 2, we add in the peaks of the

level 2 hats in both dimensions, for an additional 4 points. Level 3 is where it gets a

little bit tricky mathematically. We can’t just keep expanding only along the axes

of the grid, because we need points on the interior as well. Conceptually, what we

do is take our current points and divide the space between points and the end of

the grid into two, and there we create a new point. This is synonymous to adding

a hat between the peaks of currently existing points.

We can make a lot more sense of that last paragraph by actually plotting the

points. The file pysg.py contains a sparse grid class with many useful functions.

Using plotGrid, you can plot the grid points. You will first need to create a sparse

grid object, and then generate the points using the built in function. Unfortunately,

plotGrid can only plot up to three dimensions. Note that in this file, our domain is

[0, 1]d rather than [−1, 1]d.

Problem 4. Explore the sparseGrid class contained in the module pysg.py.

Figure out how to create a sparse grid object, generate the points, and plot

them. This function should plot the sparse grid points for a grid of dimension

2 and level 5. See the figure above.

7

Multi-dimensional integration for functions with independent endpoints (those

that are numbers that do not depend on other variables) is simplified greatly by

using sparse grids. Functions must be manipulated appropriately before sparse grid

classes like those in pysg.py can be used to do the integration, but once this has

been done, their evaluation becomes rather simple. Once the coefficients for the

hat functions have been computed, the integrals can be evaluated without having

to perform any integration. Sparse grids are powerful tools for fast computation of

high-dimension integrals.

	spgrid

