
Lab 1

Complex Numbers

Lab Objective: Visualize complex functions to estimate their zeros and poles.

Polar Representation of Complex Numbers

Any complex number z = x+ iy can be written in polar coordinates as reiθ where

• r =
√
x2 + y2 is the magnitude of z, and

• θ = arctan(y/x) is the angle between z and 0, as in Figure 1.1.

Conversely, Euler’s formula implies reiθ = r cos(θ)+ ir sin(θ). Then if we set reiθ =

x+ iy and equate real and imaginary parts, we find x = r cos(θ) and y = r sin(θ).

It is easy to convert between coordinate systems in NumPy, which uses the

symbol 1j for the complex number i =
√
−1.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> z = 2 - 2*1j

Use np.angle() and np.absolute() to compute θ and r, respectively. These functions

also operate elementwise on NumPy arrays.

>>> theta = np.angle(z)

>>> r = np.absolute(z)

The function np.absolute() returns a value between -pi and pi.

>>> print r, theta

(2.8284271247461903, -0.78539816339744828)

Check that z=re^(i*theta)

>>> np.allclose(z, r*np.exp(1j*theta))

True

1

2 Lab 1. Complex Numbers

iy

x

θ

r

Figure 1.1: The complex number represented by the black dot equals both x + iy

and reiθ, when θ is written in radians.

Visualizing complex functions

Suppose we wish to graph a function f(z) : C → C. The difficulty is that C has 2

real dimensions, so the graph of f should use 4 real dimensions. Since we already

have ways to visualize 3 dimensions, we should choose one dimension to ignore. We

will ignore the magnitude r = |f(z)| of the output.

To visualize f , we will assign a color to each point z ∈ C. The color will

correspond to the angle θ of the output f(z). As an example, we have plotted the

identity function f(z) = z in Figure 1.2. As θ goes from 0 to 2π, the colors cycle

smoothly counterclockwise from red to green to purple and back to red.

This kind of plot uses rectangular coordinates in the domain and polar coordi-

nates (or rather, just the θ-coordinate) in the codomain. Note that this kind of plot

tells you nothing about |f(z)|.
You can create the plot in Figure 1.2 as follows. Begin by creating a grid of

complex numbers. We create the real and imaginary parts separately, and then use

np.meshgrid() to turn them into a single array of complex numbers.

>>> x = np.linspace(-1, 1, 401)

>>> y = np.linspace(-1, 1, 401)

>>> X, Y = np.meshgrid(x, y)

>>> Z = X + 1j*Y

Now we compute the angles of the points in Z and plot these using plt.pcolormesh

() with the colormap 'hsv'. This colormap is red at both ends, so that 0 and 2π

will map to the same color.

>>> plt.pcolormesh(X, Y, np.angle(Z), cmap='hsv')
>>> plt.show()

Problem 1. Write the following function to plot any function from C to C.

def plot_complex(f, xbounds, ybounds, res=401):

'''Plot the complex function f.

INPUTS:

f - A function handle. Should represent a function

3

Figure 1.2: Plot of f : C → C defined by f(z) = z. The color at each point z

represents the argument of f(z).

from C to C.

xbounds - A tuple (xmin, xmax) describing the bounds on the real part

of the domain.

ybounds - A tuple (ymin, ymax) describing the bounds on the imaginary

part of the domain.

res - A scalar that determines the resolution of the plot.

Defaults to 401.

'''

When you call plt.pcolormesh() in this function, you should specify the key-

word arguments vmin and vmax. These define which numbers should map to

each end of the color scale. If you do not specify them, matplotlib will scale

the colormap to fit your data exactly.

Check your function on the identity (graphed in Figure 1.2) and on the

function f(z) =
√
z2 + 1, which is graphed in Figure 1.3.

4 Lab 1. Complex Numbers

Figure 1.3: Plot of
√
z2 + 1 on the domain {x+ iy | x ∈ [−3, 3], y ∈ [−3, 3]}

created by plot_complex().

Analyzing Complex Plots

Zeros

The plots created by your function plot_complex() are surprisingly informative.

Problem 2.

1. Use plot_complex() to plot the functions z2, z3, and z4. What do you

notice?

2. Plot z3 − iz4 − 3z6 on the domain {x + iy | x ∈ [−1, 1], y ∈ [−1, 1]}
(this plot is Figure 1.4). Compare it to your plot of z3, especially near

the origin. Based on these plots, what can you learn about the zeros

of a function from its graph?

In Problem 2 you should have noticed when you plot zn, the color circle around

0 repeats n times. This is explained by looking at zn in polar coordinates:

zn = (reiθ)n = rnei(nθ).

Multiplying θ by a number greater than 1 compresses the graph along the “θ-axis”

by a factor of n. Compare this to replacing f(x) with f(nx) when f is a function

from R to R.

5

Figure 1.4: Plot of f(z) = z3 − iz4 − 3z6 on the domain {x + iy | x ∈ [−1, 1], y ∈
[−1, 1]}. From this plot we see that f(z) has a zero of order 3 at the origin, and 3

zeros of order 1 scattered around it. This accounts for the 6 roots of f(z) that are

guaranteed to exist by the Fundamental Theorem of Algebra.

From Problem 2 you should also have noticed that the plot of z3−iz4−3z6 looks

a lot like the plot of z3 near the origin. This is because when z is very small, z4

and z6 are much smaller than z3, and so the behavior of z3 dominates the function.

In general, f(z) has a zero of order n at z0 if the Taylor series of f(z) centered

at z0 can be written as

f(z) =

∞∑
k=n

ak(z − z0)k with an 6= 0.

In other words, f(z) = an(z−z0)n+an+1(z−z0)n+1 + In a small neighborhood

of z0, the quantity |z − z0|n+k is much smaller than |z − z0|n, and so the function

behaves like an(z − z0)n. This explains why you can estimate the order of a zero

by counting the number of times the colors circle a point (see Figure 1.4).

Poles

The plots created by plot_complex() can also tell us about the poles of a function.

Problem 3.

1. Use plot_complex() to plot the function f(z) = 1/z. Compare this to

6 Lab 1. Complex Numbers

the plot of f(z) = z in Figure 1.2. What is the difference?

2. Plot z−2, z−3, and z2 + iz−1 + z−3 on the domain {x + iy | x ∈
[−1, 1], y ∈ [−1, 1]}. Compare the plots of the last two functions near

the origin. Based on these plots, what can you learn about the poles

of a function from its graph?

In Problem 3 you should have noticed that in the graph of 1/z, the colors cycle

around 0 in the opposite direction from the graph of the identity map. Again this

can be explained by looking at the polar representation:

z−n = (reiθ)−n = r−nei(−nθ).

The minus-sign on the θ reverses the direction of the colors, and the n makes them

repeat n times.

In general, a function has a pole of order n at z0 if its Laurent series on a

punctured neighborhood of z0 is

f(z) =

∞∑
k=−n

ak(z − z0)k with a−n 6= 0.

In other words, f(z) = a−n(z−z0)−n+a−n+1(z−z0)−n+1 + Since |z−z0|−n+k
is much smaller than |z− z0|−n when |z− z0| is small, near z0 the function behaves

like a−n(z − z0)−n. This explains why you can estimate the order of a pole by

counting the number of times the colors circle a point in the “backwards direction.”

Finally, a function has an essential pole at z0 if its Laurent series in a punctured

neighborhood of z0 requires infinitely many terms with negative exponents. For

example,

e1/z =

∞∑
k=0

1

n!zn
= 1 +

1

z
+

1

2

1

z2
+

1

6

1

z3
+

The plot of f(z) = e1/z is in Figure 1.5. Here, you can see that the colors circle

around an essential singularity infinitely many times.

Using Plots to Estimate Poles and Zeros

To summarize, you can use the plot of a complex function to estimate its poles and

zeros with the following rules.

• Colors circle around zeros in the “forwards direction”.

• Colors circle around poles in the “backwards direction”.

• The number of times the colors repeat equals the order of the zero or pole.

7

Figure 1.5: Plot of e1/z on the domain {x+ iy | x ∈ [−1, 1], y ∈ [−1, 1]}. The colors

circle clockwise around the origin because it is a singularity, not a zero. Because

the singularity is essential, the colors repeat infinitely many times.

Problem 4. Plot these functions on the domains given and estimate the

number and order of their poles and zeros.

• f(z) = ez on {x+ iy | x ∈ [−8, 8], y ∈ [−8, 8]}

• f(z) = tan(z) on {x+ iy | x ∈ [−8, 8], y ∈ [−8, 8]}

• f(z) = 16z4+32z3+32z2+16z+4
16z4−16z3+5z2 on {x+ iy | x ∈ [−1, 1], y ∈ [−1, 1]}

One useful application of complex plots is to estimate the zeros of polynomials

and their multiplicity.

Problem 5. Use complex plots to determine the multiplicity of the zeros of

each of the following polynomials. Use the Fundamental Theorem of Algebra

to ensure that you have found them all.

1. −2z7 + 2z6 − 4z5 + 2z4 − 2z3 − 4z2 + 4z − 4

2. z7 + 6z6 − 131z5 − 419z4 + 4906z3 − 131z2 − 420z + 4900

8 Lab 1. Complex Numbers

Plotting functions is not a substitute for rigorous mathematics. Often, plots can

be deceptive.

Problem 6.

1. This example shows that sometimes you have to “zoom in” to see all

the information about a pole.

(a) Plot the function f(z) = sin(1
100z) on the domain {x + iy | x ∈

[−1, 1], y ∈ [−1, 1]}. What might you conclude about this func-

tion?

(b) Now plot f(z) on {x + iy | x ∈ [−.01, .01], y ∈ [−.01, .01]}. Now

what do you conclude about the function?

2. This example shows that from far away, two distinct zeros (or poles)

can appear to be a single zero (or pole) of higher order.

(a) Plot the function f(z) = z + 1000z2 on the domain {x+ iy | x ∈
[−1, 1], y ∈ [−1, 1]}. What does this plot imply about the zeros

of this function?

(b) Find the zeros of f(z) using algebra.

(c) Plot f(z) on a domain that allows you to see the true nature of

its zeros.

Multi-Valued Functions

Every complex number has two complex square roots, since if w2 = z, then also

(−w)2 = z. If z is not zero, these roots are distinct.

Over the nonnegative real numbers, it is possible to define a continuous square

root function. However, it is not possible to define a continuous square root function

over any open set of the complex numbers that contains 0. This is intuitive after

graphing
√
z on the complex plane.

Problem 7. 1. Use plot_complex to graph f(z) =
√
z. Use np.sqrt() to

take the square root. What do you see?

2. Now plot f(z) = −
√
z to see the “other square root” of z. What do

you see?

Just as raising z to a positive integer “compresses the θ-axis”, making the color

wheel repeat itself n times around 0, raising z to a negative power stretches the

θ-axis, so that only one nth of the color wheel appears around 0. The colors at the

ends of this nth-slice are not the same, but they appear next to each other in the

plot of z−n. This discontinuity will appear in every neighborhood of the origin.

9

If your domain does not contain the origin, it is possible to define a continuous

root function by picking one of the roots.

Appendix

It is possible to visualize the argument and the modulus of the output of a complex

function f(z). One way to do so is to assign the modulus to a lightness of color.

For example, suppose we have a complex number with argument 0, so it will map

to red in the color plots described above. If its modulus is very small, then we can

map it to a blackish red, and if its modulus is large, we can map it to a whitish red.

With this extra rule, our complex plots will still be very much the same, except

that zeros will look like black dots and poles will look like white dots (see Figure

1.6 for an example).

The code below implements the map we just described. Be warned that this

implementation does not scale well. For example, if you try to plot a complex

function whose outputs are all very small in modulus, the entire plot will appear

black.

import numpy as np

import matplotlib.pyplot as plt

from colorsys import hls_to_rgb

def colorize(z):

'''
Map a complex number to a color (or hue) and lightness.

INPUT:

z - an array of complex numbers in rectangular coordinates

OUTPUT:

If z is an n x m array, return an n x m x 3 array whose third axis encodes

(hue, lightness, saturation) tuples for each entry in z. This new array can

be plotted by plt.imshow().

'''

zy=np.flipud(z)

r = np.abs(zy)

arg = np.angle(zy)

Define hue (h), lightness (l), and saturation (s)

Saturation is constant in our visualizations

h = (arg + np.pi) / (2 * np.pi) + 0.5

l = 1.0 - 1.0/(1.0 + r**0.3)

s = 0.8

Convert the HLS values to RGB values.

This operation returns a tuple of shape (3,n,m).

c = np.vectorize(hls_to_rgb) (h,l,s)

Convert c to an array and change the shape to (n,m,3)

c = np.array(c)

c = c.swapaxes(0,2)

c = c.swapaxes(0,1)

return c

10 Lab 1. Complex Numbers

Figure 1.6: Plot of the function z2−1
z created with colorize(). Notice that the zero

at 1 is a black dot and the pole at 0 is a white dot.

The following code uses the colorize() function to plot z2−1
z . The output is

Figure 1.6.

>>> f = lambda z : (z**2-1)/z

>>> x = np.linspace(-.5, 1.5, 401)

>>> y = np.linspace(-1, 1, 401)

>>> X,Y = np.meshgrid(x,y)

>>> Z=f(X+Y*1j)

>>> Zc=colorize(Z)

>>> plt.imshow(Zc, extent=(-.5, 1.5, -1, 1))

>>> plt.show()

	Complex Numbers
	Integration in the Complex Plane

