
Lab 1

Complex Integration

Lab Objective: Understand some simple uses of residues and singularities in the

complex plane.

In the previous lab, we looked a visual representations of the roots and singu-

larities of complex functions. Here we look more at singularities and what they can

be used to compute.

Laurent Series and Singular Points

We will now introduce another form of series representation of functions. A Laurent

series of a function is a series of the form

∞∑
n=−∞

an(z − z0)n

It can be proven that

an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz

where C is a contour which passes counterclockwise around the singularity exactly

once. When f does not have a singularity at z0 this representation degenerates

to a normal Taylor Series (with the derivatives evaluated by the formula for the

nth derivative of an analytic function). These sorts of series are considered in

greater detail in the text. The built in function sympy.series can evaluate the series

expansion of a function at a singularity, for example

import sympy as sy

z = sy.Symbol('z')
(1/sy.sin(z)).series(z,0,8)

The Laurent series representation provides a simple way to classify singularities

in the complex plane. Isolated singular points can be classified as removable singular

points, poles, or essential singular points. These definitions will also be discussed in

greater detail in the text. Here we will show another method for visualizing complex

1

2 Lab 1. Integration in the Complex Plane

functions. In Lab ?? we presented color plots as a useful method for visualizing

functions in the complex plane. Here we will also show how to use surface plots to

visualize the modulus of complex functions.

Now you have to take care when a surface plot is about a singularity. We must

account for the fact that the function is not going to be defined at all of the points

we use in our graph. We will also have to limit the z axis on the plot to avoid

creating a plot that is dominated exclusively by the extremely large and extremely

small values of the function. Plotting libraries like Mayavi and Matplotlib do allow

thresholding of 3D plots via the use of floating point values of nan, but doing this

may result in graphs having jagged edges where they have been cut. We can avoid

the jagged edges by artificially adding a small lip of constant values to the plot as

well. This can be done with Matplotlib as follows:

import numpy as np

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D #needed to create 3d plots

x_bounds, y_bounds = (-1.,1.), (-1.,1.)

res = 400

Set the threshold at which to cut the 'z' values

threshold = 2.

space in 'z' values to use to create a lip on the plot

lip = .5

x = np.linspace(x_bounds[0], x_bounds[1], res)

y = np.linspace(y_bounds[0], y_bounds[1], res)

X, Y = np.meshgrid(x, y, copy=False)

Z = 1 / (X + 1.0j * Y)

Z = np.abs(Z)

Set the values between threshold and

threshold + lip to be equal to threshold.

This forms a somewhat more concrete

edge at the top of the plot.

Z[(threshold+lip>Z)&(Z>threshold)] = threshold

Do the same thing for the negative restriction on 'z'.
Z[(-threshold-lip<Z)&(Z<-threshold)] = -threshold

Set anything that is larger to np.nan so it doesn't get plotted.

Z[np.absolute(Z) >= threshold + lip] = np.nan

Now actually plot the data.

fig = plt.figure()

ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap="coolwarm")

plt.show()

You may notice that this still leaves some very jagged edges around the singularity.

Much more detailed code would be needed to obtain good surface plots around a

singular point.

Figures 1.1 show surface plots of some relatively well-behaved singular points.

Problem 1. Write a function that takes in a function, x and y bounds, and

a resolution and plots the modulus of the function as a 3d plot. Remember

to take in account that it may be around a singularity.

3

Figure 1.1: Surface plots of the absolute value of 1
z and 1

z2 about the origin.

Residues

The number a−1 in the Laurent expansion for a function f at a point z0 is called the

Residue of f at z0. The formula for the coefficients of the Laurent series provides

one way to compute residues. It is sometimes easier to evaluate a residue using

limits or some other formula. One good way to do this is to use the following

formula:

Let f(z) = p(z)
q(z) and let p and q be holomorphic at z0. Let p(z0) 6= 0 and

q(z0) = 0. Suppose that z0 is a pole of order 1 of f . Then

Res
z=z0

f(z) =
p(z0)

q′(z0)

A natural consequence of the Laurent series expansion of f(z) and f ′(z) at a

pole z0 is that, where d is the degree of the pole at z0,

−Res
z=z0

f ′(z)

f(z)
= d

This is a useful bit of information that may be used to simplify computation of

residues or of the Laurent series expansion of a function since it allows us to avoid

evaluating a long series of integrals we already know will evaluate to 0.

4 Lab 1. Integration in the Complex Plane

There is also a natural relationship between the residues of a function at its poles

and its partial fraction decomposition. Let f = p
q where p and q are polynomials,

q has no repeated roots, and the degree of p has degree less than the degree of q.

This means that f has a partial fraction representation

f =
∑ ci

z − zi
where the ci are appropriately chosen coefficients and zi are the distinct zeros of

q. Consider what happens when we take the residue of this sum. Since integrals

distribute over sums, so do residues, so we may say

Res
z=zi

f =
∑

Res
z=zi

ci
z − zi

Since the zeros of q are distinct, and the function 1
z−zi is holomorphic wherever

z 6= zi, we see that

Res
z=zi

f = ciRes
z=zi

1

z − zi
= ci

This means that we can use residues to compute partial fraction decompositions,

so long as the function in the denominator does not have repeated roots.

Problem 2. Write a Python function that, given polynomial objects p and

q, computes the partial fraction decomposition of the function p
q . Assume

that the degree of p is less than the degree of q and that q has no repeated

roots. Return two arrays. The first should contain the coefficients in the

partial fraction decomposition. The second should contain the corresponding

zeros of q.

The poly1d object in NumPy makes it easy to work with polynomials:

>>> from numpy import poly1d

To represent the polynomial y = x^2 - 1, we pass in a list of its ←↩
coefficients, highest power to lowest power.

>>> my_polynomial = poly1d([1., 0., -1])

>>> my_polynomial.roots

array([1., -1.]) #The roots are 1 and -1

>>> my_polynomial.deriv()

poly1d([2., 0.]) #The derivative is the polynomial y = 2x

Evaluating Indefinite Integrals Using Residues

One convenient use of residues is the evaluation of integrals that are difficult to

evaluate symbolically in other ways. Often, when we cannot directly assign a value

to one of these integrals, residues can still help us evaluate the Cauchy principal

value of the integral. Recall that, for an integral
∫∞
−∞ f(x)dx, the Cauchy principal

value is limr→∞
∫ r
−r f(x)dx. This limit may exist, even though the integral itself

may not. The methods for using residues to evaluate such integrals will be discussed

in greater details in the text. Here we consider one example.

5

Figure 1.2: A contour used for integration using residues.

Consider the integral
∫∞
−∞

z2

z4+1 . Let f(z) = z2

z4+1 . Notice that this function has

poles at e
πi
4 , e

3πi
4 , e

5πi
4 , and e

7πi
4 . For notation, let these be p0, p1, p2, and p3. For

some real R > 1, consider the contour C from −R to R and counterclockwise along

the circle centered at 0 of radius R back to -R.

This contour (a semi circle) is shown in Figure 1.2 with R = 2. Let A be this

second portion of C. Since R > 1, p0 and p1 lie inside the contour, and we have∫
C

f(z)dz = 2πi(Res
z=p0

f(z) + Res
z=p1

f(z))

So, rewriting, we have∫ R

−R
f(z)dz = 2πi(Res

z=p0
f(z) + Res

z=p1
f(z))−

∫
A

f(z)dz

so ∫ ∞
−∞

f(z)dz = lim
R→∞

∫ R

−R
f(z)dz = 2πi(Res

z=p0
f(z) + Res

z=p1
f(z))− lim

R→∞

∫
A

f(z)dz

We would like to show that limR→∞
∫
A
f(z)dz = 0, so note that on A, |z| = R. With

some effort, it follows from the triangle inequality that
∣∣z4 + 1

∣∣ ≥ ∣∣∣|z|4 − 1
∣∣∣ = R4−1,

so we have that∣∣∣∣∫
A

f(z)dz

∣∣∣∣ ≤ ∫
A

|f(z)| dz ≤
∫
A

R2

R4 − 1
dz = πR

R2

R4 − 1

6 Lab 1. Integration in the Complex Plane

so limR→∞
∫
A
f(z)dz = 0 as desired. This then implies that∫ ∞

−∞
f(z)dz = 2πi(Res

z=p0
f(z) + Res

z=p1
f(z))

Evaluating the residues at p0 and p1 we have∫ ∞
−∞

f(z)dz =
π√
2

We will not consider functions that have a singularity on the real line. So for a

function f on C with only zeros of at most order 1 on R, where A is the sum of the

residues of f on the upper half plane,∫ ∞
−∞

f(z)dz = 2πiA

whenever this integral exists. When we can say that the integral of f over the upper

half of a circle centered at 0 goes to 0 as the radius of the circle increases and we

can also say that the Cauchy principal value of the integral of f over R exists, this

formula will give us a proper numerical value for the Cauchy principal value of the

integral of f over R.

Problem 3. Write a function that computes the sum 2πiA (where A is

defined as above) for a function f of the form p
q where p and q are polynomials

of the same form as in Problem 2.

Integration techniques using residues can also be extended to integration around

branch points, some types of integrals involving sines and cosines, inverse Laplace

transforms, and many other difficult integration problems.

Problem 4. In the text, the zero and pole counting formula was stated and

proved. An immediate consequence of that theorem is that, for a meromor-

phic function f and a positively oriented simple closed curve γ that does not

pass through any roots of f ,∫
γ

f ′ (z)

f (z)
dz = 2πi (a− b)

where a is the number of zeros on the interior of γ (counting multiplici-

ties) and b is the number of poles of f on the interior of γ (also counting

multiplicities).

This formula gives another possible way to count the number of zeros of

a polynomial on the interior of a given contour along with looking at the

color plots and manually counting them as taught in the previous lab.

Write a Python function that counts the number of zeros of a polynomial

7

on the interior of the unit circle then plots the color plot of the function on

the unit square.

	Integration in the Complex Plane

