
Lab 1

PageRank Algorithm

Lab Objective: Implement the PageRank Algorithm and understand the theory

behind it.

As of 2013, the PageRank algorithm is one of over 200 algorithms that Google

uses to determine the rank, or relative importance, of a webpage. Named for Larry

Page, cofounder of Google, this algorithm ranks pages based on how many other

pages link to them.

The Internet as a Graph

The PageRank algorithm models the internet with a directed graph. Each webpage

is a node, and there is an edge from node i to node j if page i links to page j. Let

In(i) be the websites linking to page i and let Out(i) be the websites that page i

links to. That is, In(i) is the set of nodes with an arrow to node i, and Out(i) is the

set of nodes with an arrow from node i. An example is illustrated in Figure 1.1.

The PageRank algorithm ranks pages based on how many other pages link to

them. Moreover, a link from a more important page counts more than a link from a

less important page. For example, in Figure 1.1 we would expect node 0 to have a

very high rank because every other node links to it. Consequently, we would expect

node 7 to have a fairly high rank because node 0 links to it, even though node 0 is

the only node to do so.

The PageRank Algorithm

The PageRank algorithm assumes that a surfer chooses a starting webpage ran-

domly. Then, if the surfer is at page i, they randomly select a page from Out(i)

to visit next. This means that the surfer’s chance of being on page i at time t is

determined by where they were at time t− 1.

Suppose the internet has N webpages, and let pi(t) be the likelihood that the

surfer is on page i at time t. Then the probabilities pi(t) are given by

pi(0) =
1

N
pi(t + 1) =

∑
j∈In(i)

pj(t)

|Out(j)|
. (1.1)
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Figure 1.1: This directed graph describes the links between 8 webpages. In this

example, In(0) = {1, 3, 4, 5, 6, 7} and Out(0) = {7}.

For example, in Figure 1.1 we have N = 8, and

p6(t + 1) =
p3(t)

3
+

p4(t)

3
+

p5(t)

2
.

Refining the Model: Adding Boredom

The equations in (1.1) describe the surfer’s habits as a Markov chain. However,

the model is more realistic if we assume that the surfer sometimes gets bored and

randomly picks a new starting page. We will denote the probability that a surfer

stays interested at step t by a constant d, called the damping factor. Then the

probability that the surfer gets bored at time t is 1− d. The formulas in (1.1) then

become

pi(0) =
1

N
pi(t + 1) = d

∑
j∈In(i)

pj(t)

|Out(j)|
+

1− d

N
. (1.2)

Refining the Model: Pages with No Outbound Links

A node with no outbound links, such as node 2 in Figure 1.1, is called a sink.

According to our model, if the surfer ever visits a sink, they will stay there forever.

This is not very realistic; in this situation, a person would likely select another

webpage at random and begin surfing again. Hence, in our model we replace sinks

with nodes linking to every other page. This means we modify Figure 1.1 (where

node 2 is a sink) to look like Figure 1.2.

Matrix Form of the PageRank Algorithm

We can rewrite (1.2) as the matrix equation

p(0) =
1

N
1 p(t + 1) = dKp(t) +

1− d

N
1 (1.3)

where p(t) = (p1(t), p2(t), . . . , pN (t))T , 1 = (1, . . . , 1)T , and K is defined by

Kij =

{
1

|Out(j)| if j links to i

0 otherwise.



3

2 3 4 5 6

1 0

7

Figure 1.2: Here Figure 1.1 has been modified to guarantee that page 2 is no longer

a sink. A new link has been added from page 2 to every other page (the added links

are grey).

Defining Page Rank

As given by the PageRank algorithm, the rank of page i is

pi = lim
t→∞

pi(t).

In other words, the page ranks are the steady state of the modified Markov chain

defined in (1.3).

Implementation in Python

The adjacency matrix A of a directed graph has Aij = 1 if there is an edge from

node i to node j, and Aij = 0 otherwise. The adjacency matrix of the graph in

Figure 1.1 is defined below. We use a code environment to describe A so you can

easily use this example to debug the problems in this lab.

A = np.array([[ 0, 0, 0, 0, 0, 0, 0, 1],

[ 1, 0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0],

[ 1, 0, 1, 0, 0, 0, 1, 0],

[ 1, 0, 0, 0, 0, 1, 1, 0],

[ 1, 0, 0, 0, 0, 0, 1, 0],

[ 1, 0, 0, 0, 0, 0, 0, 0],

[ 1, 0, 0, 0, 0, 0, 0, 0]])

Problem 1. Write the following function that creates a sparse adjacency

matrix from a file.

def to_matrix( filename, n ):

''' Return the nxn adjacency matrix described by the file.
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INPUTS:

filename - Name of a .txt file describing a directed graph. Lines

describing edges should have the form

'<from node>\t<to node>'.
The file may also include comments.

n - The number of nodes in the graph described by datafile

RETURN:

Return a SciPy sparse `dok_matrix'.
'''

Hints:

1. The file datafile.txt included with this lab describes the matrix in

Figure 1.1 and has the adjacency matrix A given above. You may use

it to test your function.

2. You can open a file in Python using the with syntax. Then, you can

iterate through the lines using a for loop. Here is an example.

# Open `datafile.txt' for read-only

with open('./datafile.txt', 'r') as myfile:

for line in myfile:

print line

3. Here is an example of how to process a line of the form in datafile.

>>> line = '0\t4\n'
# strip() removes trailing whitespace from a line.

# split() returns a list of the space-separated pieces of the line.

>>> line.strip().split()

['0', '4']

4. Rather than testing for lines of datafile.txt that contain comments,

put all your string operations in a try block with an except block fol-

lowing.

Note

It makes sense to initialize A as a sparse matrix, since A is mostly zeros. To

make the coding easier, throughout the rest of the lab the algorithms will be

coded using non-sparse matrices. Don’t forget, however, that in a real-world

sparse adjacency matrices are generally much more time-efficient than dense

matrices.

To convert from a sparse to a non-sparse matrix, use the syntax A.todense().



5

The next step is to compute K from (1.3). A good strategy for computing K

comes from writing

K = (D−1A)T

where A is the adjacency matrix of the directed graph representing the internet and

D is a diagonal matrix with Djj = |Out(j)|. Modify A so that rows corresponding

to sinks have all ones instead of all zeros. For Figure 1.2, the modified adjacency

matrix is defined below.

Am = np.array([[ 0, 0, 0, 0, 0, 0, 0, 1],

[ 1, 0, 0, 0, 0, 0, 0, 0],

[ 1, 1, 1, 1, 1, 1, 1, 1],

[ 1, 0, 1, 0, 0, 0, 1, 0],

[ 1, 0, 0, 0, 0, 1, 1, 0],

[ 1, 0, 0, 0, 0, 0, 1, 0],

[ 1, 0, 0, 0, 0, 0, 0, 0],

[ 1, 0, 0, 0, 0, 0, 0, 0]])

The matrix D is easily obtained by summing the rows of A. Although K =

(D−1A)T , it is a very bad idea to invert D and actually perform the matrix multi-

plication D−1A. Instead, store only the diagonal entries of D as a vector, and use

array broadcasting to divide A by D.

Notice that we need to transpose D−1A to get K. This is because D−1A is

row stochastic (meaning that the rows sum to 1), but we need to multiply column

stochastic matrices (where the columns sum to 1) To make K be column stochastic,

we have to take a transpose.

For Figure 1.2, the matrix K is as follows.

K = np.array([[ 0 , 1 , 1./8, 1./3, 1./3, 1./2, 1 , 1 ],

[ 0 , 0 , 1./8, 0 , 0 , 0 , 0 , 0 ],

[ 0 , 0 , 1./8, 1./3, 0 , 0 , 0 , 0 ],

[ 0 , 0 , 1./8, 0 , 0 , 0 , 0 , 0 ],

[ 0 , 0 , 1./8, 0 , 0 , 0 , 0 , 0 ],

[ 0 , 0 , 1./8, 0 , 1./3, 0 , 0 , 0 ],

[ 0 , 0 , 1./8, 1./3, 1./3, 1./2, 0 , 0 ],

[ 1 , 0 , 1./8, 0 , 0 , 0 , 0 , 0 ]])

Problem 2. Write a function that computes the K matrix given an adja-

cency matrix.

1. Compute the diagonal matrix D.

2. Compute the modified adjacency matrix where the rows corresponding

to sinks all have ones instead of zeros.

3. Compute K using array broadcasting.

Solving for the Page Ranks

There are several ways to solve for limt→∞ p(t).
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Algebraic Method

One possibility is to assume the modified Markov chain has a steady state p and

solve for it algebraically:

(I − dK)p =
1− d

N
1. (1.4)

We can use SciPy’s solver to find the page ranks of the network in Figure 1.2.

>>> from scipy import linalg as la

>>> I = np.eye(8)

>>> d = .85

>>> la.solve(I-d*K, ((1-d)/8)*np.ones(8))

array([ 0.43869288, 0.02171029, 0.02786154, 0.02171029, 0.02171029,

0.02786154, 0.04585394, 0.39459924])

As expected, node 0 has the highest rank, approximately equal to .44. Node 7 has

a higher rank than node 6, even though In(7) = 1 and In(6) = 3. This is because

node 7’s single in-edge comes from a node that has a very high rank (node 0).

Iterative Method

Solving the system in (1.4) is feasible for our small working example, but this is not

an efficient strategy for very large systems.

One option for large systems is an iterative method. Starting with a guess for

p(0), we iterate (1.3) until ‖p(t)− p(t− 1)‖ is sufficiently small. At this point we

assume we have reached the steady state.

Problem 3. Implement the function below, using the iterative method to

find the steady state of the PageRank algorithm.

def iter_solve( adj, N=None, d=.85, tol=1E-5):

'''
Return the page ranks of the network described by 'adj' using the ←↩

iterative method.

INPUTS:

adj - A NumPy array representing the adjacency matrix of a directed

graph

N - Restrict the computation to the first `N` nodes of the graph.

Defaults to N=None; in this case, the entire matrix is used.

d - The damping factor, a float between 0 and 1.

Defaults to .85.

tol - Stop iterating when the change in approximations to the

solution is less than `tol'. Defaults to 1E-5.

OUTPUTS:

Return the approximation to the steady state of p.

'''

Hints:

1. At each step, test your function against the example in this lab.
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2. Don’t forget to eliminate sinks. It is possible (but not necessary) to do

this in a single line.

3. When N is not None, you want to work with only the upper N × N

portion of the array adj.

Eigenvalue Method

Another way to solve this problem is to make it into an eigenvalue problem. Let E

be an N ×N matrix of ones; then Ep(t) = 1. Hence, the matrix equation (1.3) for

p(t + 1) becomes

p(t + 1) =
(
dK +

1− d

N
E
)
p(t).

If we write B = dK + 1−d
N E, this simplifies to p(t + 1) = Bp(t). Thus, the steady

state p(t) is an eigenvector of B corresponding to the eigenvalue 1.

The columns of B sum to 1, and the entries of B are strictly positive (because the

entries of E are all positive). With these hypotheses, the Perron-Frobenius theorem

says that 1 is the unique eigenvalue of B of largest magnitude, and the corresponding

eigenvector is unique. In this case, the “iterative method” described above is just the

power method for finding the eigenvector corresponding to a dominant eigenvalue,

introduced in Lab ??.

We can also compute p using eigenvalue solvers in SciPy.

Problem 4. Implement the function below, using the eigenvalue method to

find the steady state of the PageRank algorithm.

def eig_solve( adj, N=None, d=.85):

'''
Return the page ranks of the network described by `adj`.

INPUTS:

adj - A NumPy array representing the adjacency matrix of a directed

graph

N - Restrict the computation to the first `N` nodes of the graph.

Defaults to N=None; in this case, the entire matrix is used.

d - The damping factor, a float between 0 and 1.

Defaults to .85.

OUTPUTS:

Return the approximation to the steady state of p.

'''

Hint: Review the techniques from the Markov chain section of Lab ??.
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Ranking Teams

This ranking algorithm can be applied not only to webpages, but to any problem

with a directed graph structure. One such application is ranking sports teams.

Suppose we have data about a collection of sports teams, including which teams

played each other and who won each match. We can model this as a directed graph.

Each node in the graph represents a team. An edge between two nodes points from

the losing team to the winning team. If two teams never played each other, there

is no edge between them. Wins and losses do not cancel out; if BYU and Boise

played twice, and each team won once, then there is an edge from BYU to Boise

and another edge from Boise to BYU. TODO: add a picture.

To simplify our model, edges are not weighted. So if Duke ever beat Harvard,

no matter whether they beat them once or 5 times, there is only one edge pointing

from Harvard to Duke.

The key here is that edges tend to lead from worse teams to better teams. So by

starting with some team and randomly following edges, we should end up visiting

better teams more often. This is reminiscent of the PageRank algorithm! Given an

appropriate dataset, we can use PageRank to estimate team rankings.

Note that in this scenario, the parameter d no longer represents boredom. It

allows us to jump randomly from one team to another, so it could represent a

surprise upset, or the random outcome of a game between two teams who have

never played each other.

Problem 5. By applying the PageRank algorithm to win-loss data from the

2013 NCAA basketball season, produce a comparative ranking of the teams.

1. The file ncaa2013.csv contains data on over 5000 basketball games.

The first line is a header. After the header, each line represents a game

and has the winning team followed by the losing team (there are no

ties in basketball).

Load this file and use it to create the adjacency matrix A, where Aij = 1

if team j beat team i. You will need some convenient way of mapping

from team names to the integers and vice versa.

2. Use the iterative method from Problem 3 with d = 0.7 to find the

steady state. The steady-state solution is your vector of ranks.

3. This data is from before the 2013 playoffs. Look up online who made

it to the Final Four that year. According to your ranking, which of

these four teams pulled the biggest upset?

4. Return the ranks sorted from largest to smallest, and the corresponding

list of teams sorted from “best” to “worst”.

Hints:

1. The code below may be helpful for processing the .csv file:
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with open('./ncaa2013.csv', 'r') as ncaafile:

ncaafile.readline() #reads and ignores the header line

for line in ncaafile:

teams = line.strip().split(',') #split on commas

print teams

>>> ['Middle Tenn St', 'Alabama St']
>>> ...

>>> ['Mississippi', 'Florida']

2. Before creating the adjacency matrix, you can get all the unique teams

by running through all the matches once and adding every team to a

set. Next, count the number of unique teams and initialize A to be

the right size. Try using dictionaries, lists, or both to map numbers

to teams and teams to numbers and fill in A. There is more than one

right way to do this.

3. The function np.argsort will be useful for sorting the ranks and teams.

4. There should be 347 teams. PageRank should predict that the top five

ranked teams are Duke, Butler, Louisville, Illinois, and Indiana (in that

order). Use this to check your results.

Optional: SNAP Datasets

The SNAP graph library, located at http://snap.stanford.edu/data/index.

html, provides a variety of medium sized data sets for public use. These datasets

have to do with networks, including road systems, social networks, and online com-

munities. There are some interesting resources here for those wanting to experiment

further with the PageRank algorithm on different datasets.

Problem 6. (Optional) Try running the functions you wrote in this lab on

a data set downloaded from SNAP.

1. Begin by running your methods on the first 100 nodes of the data set.

2. Modify your solution to Problem 3 so that it uses only sparse matrices.

With this modification, you should be able to run the function on

more nodes. Hint: Convert the adjacency matrix to a csc_matrix or a

csr_matrix to perform the computations.

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

	PageRank Algorithm

