
Lab 1

Krylov Subspaces

Lab Objective: Use Krylov subspaces to find eigenvalues of extremely large

matrices.

One of the biggest difficulties in computational linear algebra is the amount of

memory needed to store a large matrix and the amount of time needed to read its

entries. Methods using Krylov subspaces avoid this difficulty by studying how a

matrix acts on vectors, making it unnecessary in many cases to create the matrix

itself.

The Arnoldi iteration is an algorithm for finding an orthonormal basis of a

Krylov subspace. One of its strengths is it can run on any linear operator with-

out knowing the operator’s underlying matrix representation. The outputs of the

Arnoldi algorithm can be used to approximate the eigenvalues of the matrix of the

linear operator.

Krylov Subspaces

The order-N Krylov subspace of A generated by x is

Kn(A,x) = span{x, Ax, A2x, . . . , An−1x}.

If the vectors {x, Ax, A2x, . . . , An−1x} are linearly independent, then they form a

basis for Kn(A,x). However, this basis is usually far from orthogonal, and hence

computations using this basis will likely be ill-conditioned.

The Arnoldi Iteration Algorithm

One way to find an orthonormal basis for Kn(A,x) is to use the modified Gram-

Schmidt algorithm from Lab ?? on the set {x, Ax, A2x, . . . , An−1x}. The Arnold it-

eration does this more efficiently by integrating the creation of {x, Ax, A2x, . . . , An−1x}
with the modified Gram-Schmidt algorithm. It returns an orthonormal basis for

Kn(A,x). This algorithm is described in Algorithm 1.1.

In Algorithm 1.1, k is the number of times we multiply by A. This will result

in an order-k + 1 Krylov subspace.

1



2 Lab 1. Finding Eigenvalues Using Iterative Methods

Algorithm 1.1 The Arnoldi Iteration. This algorithm accepts a square matrix

A and starting vector b. It iterates k times or until the norm of the next vector

in the iteration is less than tol. The algorithm returns upper Hessenberg H and

orthonormal Q such that H = QHAQ.

1: procedure Arnoldi(b, A, k, tol)

2: Q← empty(size(b), k + 1) . Some initialization steps

3: H ← zeros(k + 1, k)

4: Q[:, 0]← b/ ‖b‖2
5: for j = 0 . . . k − 1 do . Perform the actual iteration.

6: Q[:, j + 1]← AQ[:, j]

7: for i = 0 . . . j do . Modified Gram-Schmidt.

8: H[i, j]← Q[:, i]TQ[:, j + 1]

9: Q[:, j + 1]← Q[:, j + 1]−H[i, j]Q[:, i]

10: H[j + 1, j]← ‖Q[:, j + 1]‖2 . Set subdiagonal element of H.

11: if |H[j + 1, j]| < tol then . Stop if ‖Q[:, j + 1]‖2 is too small.

12: return H[: j + 1, : j + 1], Q[:, : j + 1]

13: Q[:, j + 1]← Q[:, j + 1]/H[j + 1, j] . Normalize qj+1.

14: return H[: −1, :], Q . Return Hk.

Something perhaps unexpected happens in the Arnoldi iteration if the starting

vector x is an eigenvector of A. If the corresponding eigenvalue is λ, then by

definition Kk(A,x) = span{x, λx, λ2x, . . . , λkx}, which is equal to the span of x.

Let us trace through Algorithm 1.1 in this case. We will use qi to denote the ith

column of Q.

In line 4 we normalize x, setting q1 = x/‖x‖. In line 6 we set q2 = Aq1 = λq1.

Then in line 8

H1,1 = 〈q1,q2〉 = 〈q1, λq1〉 = λ〈q1,q1〉 = λ,

so in line 9 we subtract λq1 from q2, ending with q2 = 0.

The vector q2 is supposed to be the next vector in the orthonormal basis for

Kk(A,x), but since it is 0, it is not linearly independent of q1. In fact, q1 already

spans Kk(A,x). Hence, when in line 11 we find that the norm of q2 is zero (or close

to it, allowing for numerical error), we terminate the algorithm early, returning the

1× 1 matrix H = H1,1 = λ and the n× 1 matrix Q = q1.

A similar phenomenon may occur if the starting vector x is contained in a proper

invariant subspace of A.

Arnoldi Iteration on Linear Operators

A major strength of the Arnoldi Iteration is that it can run on a linear operator,

even without knowing the matrix representation of the operator. If Amul is some

linear function, then we can modify the pseudocode above by replacing AQ[:, j]

with Amul(Q[:, j]). This will make it possible to find the eigenvalues of an arbitrary

linear transformation. We will use this method in the problem below.



3

Problem 1. Using Algorithm 1.1, complete the following Python function

that performs the Arnoldi iteration. Write this function so that it can run

on complex arrays.

def arnoldi(b, Amul, k, tol=1E-8):

'''Perform `k' steps of the Arnoldi iteration on the linear operator

defined by `Amul', starting with the vector 'b'.

INPUTS:

b - A NumPy array. The starting vector for the Arnoldi iteration.

Amul - A function handle. Should describe a linear operator.

k - Number of times to perform the Arnoldi iteration.

tol - Stop iterating if the next vector in the Arnoldi iteration has

norm less than `tol'. Defaults to 1E-8.

RETURN:

Return the matrices H_n and Q_n defined by the Arnoldi iteration. The

number n will equal k, unless the algorithm terminated early, in which

case n will be less than k.

Examples:

>>> A = np.array([[1,0,0],[0,2,0],[0,0,3]])

>>> Amul = lambda x: A.dot(x)

>>> H, Q = arnoldi(np.array([1,1,1]), Amul, 3)

>>> np.allclose(H, np.conjugate(Q.T).dot(A).dot(Q) )

True

>>> H, Q = arnoldi(np.array([1,0,0]), Amul, 3)

>>> H

array([[ 1.+0.j]])

>>> np.conjugate(Q.T).dot(A).dot(Q)

array([[ 1.+0.j]])

'''

Hints:

1. Since H and Q will eventually hold complex numbers, initialize them as

complex arrays (e.g., A = np.empty((3,3), dtype=np.complex128)).

2. Remember to use complex inner products.

3. This function can be tested on a matrix A by passing in A.dot for Amul.

Finding Eigenvalues Using Arnoldi Iteration

Let A be an n× n matrix. Let Qk be the matrix whose columns q1, . . . ,qk are the

orthonormal basis for Km(A,x) generated by the Arnoldi algorithm, and let Hk be

the k× k upper Hessenburg matrix defined at the kth stage of the algorithm. Then

these matrices satisfy

Hk = QH
kAQk. (1.1)

If k < n, then Hk is a low-rank approximation to A. We may use its eigenvalues

as approximations to the eigenvalues of A. The eigenvalues of Hk are called Ritz



4 Lab 1. Finding Eigenvalues Using Iterative Methods

values, and in fact they converge quickly to the largest eigenvalues of A.

Problem 2. Finish the following function that computes the Ritz values of

a matrix.

def ritz(Amul, dim, k, iters):

''' Find `k' Ritz values of the linear operator defined by `Amul'.

INPUTS:

Amul - A function handle. Should describe a linear operator on

R^(dim).

dim - The dimension of the space on which `Amul' acts.

k - The number of Ritz values to return.

iters - The number of times to perform the Arnoldi iteration. Must

be between `k' and `dim'.

RETURN:

Return `k' Ritz values of the operator defined by `Amul.'
'''

One application of the Arnoldi iteration is to find the eigenvalues of linear op-

erators that are too large to store in memory. For example, if an operator acts on

C220 , then its matrix representation contains 240 complex values. Storing such a

matrix would require 64 terabytes of memory!

An example of such an operator is the Fast Fourier Transform, cited by SIAM as

one of the top algorithms of the century [Cipra2000 ]. The Fast Fourier Transform

is used ubiquitously in the field of signal processing.

Problem 3. The four largest eigenvalues of the Fast Fourier Transform are

known to be {−
√
N,
√
N,−i

√
N, i
√
N} where N is the dimension of the

space on which the transform acts. Use your function ritz() from Problem

2 to approximate the eigenvalues of the Fast Fourier Transform. Set k to be

10 and set dim to be 220. For the argument Amul, use the fft function from

scipy.fftpack.

The Arnoldi iteration for finding eigenvalues is implemented in a Fortran library

called ARPACK. SciPy interfaces with the Arnoldi iteration in this library via the

function scipy.sparse.linalg.eigs(). This function has many more options than the

implementation we wrote in Problem 2. In this example, the keyword argument k=5

specifies that we want five Ritz values. Note that even though this function comes

from the sparse library in SciPy, we can still call it on regular NumPy arrays.

>>> B = np.random.rand(10000).reshape(100, 100)

>>> sp.sparse.linalg.eigs(B, k=5, return_eigenvectors=False)

array([ -1.15577072-2.59438308j, -2.63675878-1.09571889j,

-2.63675878+1.09571889j, -3.00915592+0.j , 50.14472893+0.j ])



5

(a) The blue line plots the error of the Ritz

value of largest magnitude. This eigenvalue

converges after fewer than 20 iterations

(b) All Ritz values have roughly equivalent

magnitude. They take from 150 to 250 iter-

ations to converge.

Figure 1.1: These plots show the relative error of the Ritz values as approximations

to the eigenvalues of a matrix. The figure at left plots the largest 15 Ritz values

for a 500× 500 matrix with random entries. The figure at right plots the largest 15

Ritz values for a 500× 500 matrix with uniformly distributed eigenvalues.

Convergence

The Arnoldi method for finding eigenvalues quickly converges to eigenvalues whose

magnitude is distinctly larger than the rest. For example, matrices with random

entries tend to have one eigenvalue of distinctly greatest magnitude. Convergence

of the Ritz values for such a matrix is plotted in Figure 1.1a.

However, Ritz values converge more slowly for matrices with random eigenval-

ues. Figure 1.1b plots convergence of the Ritz values for a matrix with eigenvalues

uniformly distributed in [0, 1).

Problem 4. Finish the following function to visualize the convergence of

the Ritz values.

def plot_ritz(A, n, iters):

''' Plot the relative error of the Ritz values of `A'.

INPUTS:

A - A NumPy array.

n - The number of Ritz values to plot.

iters - The number of times to perform the Arnoldi iteration.

Create the following plot:

- The x-axis is the number k of Arnoldi iterations on the x-axis

- The y-axis is the relative error of the Ritz values of H_k as

approximations to the eigenvalues of A.

'''

If x̃ is an an approximation to x, then the absolute error in the approximation



6 Lab 1. Finding Eigenvalues Using Iterative Methods

is
‖x− x̃‖
‖x‖

.

Hint: The most difficult part of this problem is to identify which Ritz values

correspond to which eigenvalues. After finding the Ritz values (or eigenval-

ues) of largest magnitude, use np.sort() to put them in order. Make sure

that this order is preserved throughout your program.

It may help to use the following algorithm.

1. Find n eigenvalues of A of largest magnitude. Store these in order.

2. Create an empty array to store the relative errors. For every k ∈[1,
iters),

(a) Compute Hk with the Arnoldi iteration.

(b) Find n eigenvalues of A of largest magnitude. Note that for small

k, the matrix Hk may not have this many eigenvalues.

(c) Store the absolute error. Make sure that the errors are stored in

the correct order. For small k, some entries in the row or column

may not be used.

3. Use array broadcasting to compute the absolute error.

4. Iteratively plot the errors. Lines for distinct eigenvalues should start

at different places on the x-axis.

Run your function on these examples. The plots should be fairly similar

to Figures 1.1b and 1.1a.

>>> # A matrix with random entries

>>> A = np.random.rand(300, 300)

>>> plot_ritz(A, 10, 175)

>>>

>>> # A matrix with uniformly distributed eigenvalues

>>> D = np.diag(np.random.rand(300))

>>> B = A.dot( D.dot(la.inv(A)) )

>>> plot_ritz(B, 10, 175)

If your code takes too long to run, consider integrating your solutions to

Problems 1 and 2 with the body of this function.

Lanczos Iteration(Optional)

The Lanczos iteration is a version of the Arnoldi iteration that is optimized to

operate on symmetric matrices. If A is symmetric, then (1.1) shows that Hk is

symmetric and hence tridiagonal. This leads to two simplifications of the Arnoldi

algorithm.

First, we have 0 = Hk,n = 〈qk, Aqn〉 for k ≤ n − 2; i.e., Aqn is orthogonal



7

to q1, . . . ,qn−2. Thus, if the goal is only to compute Hk (say to find the Ritz

values), then we only need to store the two most recently computed columns of Q.

Second, the data of Hk can also be stored in two vectors, one containing the main

diagonal and one containing the first subdiagonal of Hk. (By symmetry, the first

superdiagonal equals the first subdiagonal of Hk.)

The Lanczos iteration is found in Algorithm 1.2.

Algorithm 1.2 The Lanczos Iteration. This algorithm operates on a vector b of

length n and an n × n symmetric matrix A. It iterates k times or until the norm

of the next vector in the iteration is less than tol. It returns two vectors x and

y that respectively contain the main diagonal and first subdiagonal of the current

Hessenberg approximation.

1: procedure Lanczos(b, A, k, tol)

2: q0 ← zeros(size(b)) . Some initialization

3: q1 ← b/ ‖b‖2
4: x← empty(k)

5: y← empty(k)

6: for i = 0 . . . k − 1 do . Perform the iteration.

7: z← Aq1 . z is a temporary vector to store qi+1.

8: x[i]← qT
1 z . q1 is used to store the previous qi.

9: z← z− x[i]q1 + y[i− 1]q0 . q0 is used to store qi−1.

10: y[i] = ‖z‖2 . Initialize y[i].

11: if y[i] < tol then . Stop if ‖qi+1‖2 is too small.

12: return x[: i+ 1], y[: i]

13: z = z/y[i]

14: q0,q1 = q1, z . Store new qi+1 and qi on top of q1 and q0.

15: return x, y[: −1]

Problem 5. Implement Algorithm 1.2 by completing the following function.

Write it so that it can operate on complex arrays.

def lanczos(b, Amul, k, tol=1E-8):

'''Perform `k' steps of the Lanczos iteration on the symmetric linear

operator defined by `Amul', starting with the vector 'b'.

INPUTS:

b - A NumPy array. The starting vector for the Lanczos iteration.

Amul - A function handle. Should describe a symmetric linear operator.

k - Number of times to perform the Lanczos iteration.

tol - Stop iterating if the next vector in the Lanczos iteration has

norm less than `tol'. Defaults to 1E-8.

RETURN:

Return (alpha, beta) where alpha and beta are the main diagonal and

first subdiagonal of the tridiagonal matrix computed by the Lanczos

iteration.



8 Lab 1. Finding Eigenvalues Using Iterative Methods

'''

As it is described in Algorithm 1.2, the Lanczos iteration is not stable. Roundoff

error may cause the qi to be far from orthogonal. In fact, it is possible for the qi

to be so adulterated by roundoff error that they are no longer linearly independent.

Problem 6. The following code performs multiplication by a tridiagonal

symmetric matrix.

def tri_mul(a, b, u):

''' Return Au where A is the tridiagonal symmetric matrix with main

diagonal a and subdiagonal b.

'''
v = a * u

v[:-1] += b * u[1:]

v[1:] += b * u[:-1]

return v

Let A be a 1000×1000 symmetric tridiagonal matrix with random values

in its nonzero diagonals. Use the function lanczos() from Problem 5 with 100

iterations to estimate the 5 eigenvalues of A of largest norm. Compare these

to the 5 largest true eigenvalues of A

If you do this problem for different vectors a and b, you may notice

that occasionally the largest Ritz value is repeated. This happens because

the vectors used in the Lanczos iteration may not be orthogonal. These

erroneous eigenvalues are called “ghost eigenvalues.”

There are modified versions of the Lanczos iteration that are numerically stable.

One of these, the Implicitly Restarted Lanczos Method, is found in SciPy as the

function scipy.sparse.linalg.eigsh().


	Finding Eigenvalues Using Iterative Methods

